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High Dynamic Range (HDR) Imaging

Due to the physical property of standard camera, natural scene with

high dynamic range (contrast) will be captured as the over(under)-

exposure areas in the captured photo.
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Modulo Camera for HDR Imaging

Mechanism: Once the accumulated radiance value reaches pre-defined threshold,

e.g., 256 for an 8-bit sensor, it resets to zero and resumes counting, enabling a

theoretically unbounded dynamic range.

Formulation: Relationship between the HDR image and modulo measurement is

𝑿 = ℳ 𝒀 , ℳ:ℳ 𝑦 = 𝑦 mod 𝑎, 𝑎 = 2𝑏,

• 𝑿 ∈ [0, 𝑎)𝐻×𝑊×𝐶 : Modulo-wrapped measurement; 𝒀 ∈ [0,2𝐵)𝐻×𝑊×𝐶: HDR image.

Goal: Reconstruct the HDR Image 𝒀 from its modulo-wrapped measurement 𝑿.
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Related Works

• Optimization using handcrafted prior.                 
E.g., MRF [1] uses graph-cut optimization with 
smoothness prior enforced.
※Limited performance on real-world images with 

complex patterns.

• Optimization using trained deep denoiser.    
E.g., PnP-UA [2] solves a variational regularization 
model using a pre-trained denoising network.
※Effectiveness is constrained due to the domain shift.

[1] Zhao Hang, Shi Boxin, Fernandez-Cull Christy, et al. Unbounded High Dynamic Range Photography Using a Modulo Camera. ICCP, 2015.

[2] Bacca Jorge, Monroy Brayan, Arguello Henry. Deep Plug-and-Play Algorithm for Unsaturated Imaging. ICASSP, 2024.
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Related Works

• Optimization leveraging untrained NN prior.                 
E.g., [3] optimizes a TV-regularized variational 
model using an untrained decoder, leveraging 
deep image prior.
※High computational cost and inferior performance.

• Supervised End-to-end Network. 
E.g., UnModNet [4] formulates modulo inversion 
as a rollover classification problem.
※Insufficient generalization as it disregards the 

inherent properties of the physical imaging process.

[3] Jagatap Gauri, Hegde Chinmay. High Dynamic Range Imaging Using Deep Image Priors. ICASSP, 2020.

[4] Zhou Chu, Zhao Hang, Han Jin, et al. UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging. NeurIPS, 2020.
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Contributions

• Reformulation of the HDR reconstruction with modulo cameras in the 

gradient space, leveraging Itoh’s continuity condition.

• The 1st deep unfolding network for HDR reconstruction with modulo 

cameras, derived from a variational model using the reformulation, with 

an auxiliary variable to effectively handle outliers.

• A spiking neuron-based module to learn a sparsity-related prior for 

outliers, enhancing the performance of HDR reconstruction. 

• Superior performance over existing methods on synthetic & real datasets.



Reformulation of Modulo HDR

Proposition 1. [Extension of 2D Itoh’s continuity condition [5]]

Given an HDR image 𝒀 and its modulo counterpart 𝑿 =ℳ 𝒀 . Let ෩ℳ denote

another modulo operator defined by ෩ℳ 𝑦 = 𝑦 + 𝑎/2 mod 𝑎 − 𝑎/2. For any

point with index (𝑖, 𝑗) satisfying 𝛁𝒀𝑖,𝑗 ∞
= max{ ∇𝑥𝒀𝑖,𝑗 , ∇𝑦𝒀𝑖,𝑗 } < 𝑎/2, we have

෩ℳ 𝛁𝑿𝑖,𝑗 = 𝛁𝒀𝑖,𝑗 .

This property simplifies the HDR reconstruction by allowing direct 

inversion of the modulo operation in the gradient domain for pixels 

within this bound.

[5] Zhile Chen, Yuhui Quan, Hui ji. Deep Unsupervised Unrolling Networks for Phase Unwrapping. CVPR 2024.



Optimization Model

• Introducing an auxiliary variable 𝑽 to mitigate the impact of outliers, define an 

optimization problem for modulo HDR reconstruction:

min
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F

2
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• Unfold its iterative scheme of sub-problems using proximal gradient descent solver.
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#(1) Replace the step for Φ 𝒀 by UNet.

#(2) Replace the step for Θ 𝑽 : Learn a
spiking neuron-based module (SNM) for
capturing the structures of sparse outliers.

In 𝑘th iteration,

#Accelerated gradient descent for better convergence.
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Deep Unfolding Network

• Implement each iteration as a phase block in the proposed DUN:
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Spiking Neuron-based Module

• Employ the Leaky Integrate-and-Fire (LIF) model [6].
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[6] Wang Siqi, Cheng Tee Hiang, Lim Meng-Hiot. LTMD: Learning Improvement of Spiking Neural Networks with Learnable Thresholding Neurons and Moderate Dropout. NeurIPS 2022.

The spiking neuron aggregates outlier information across

unfolding phases, enhancing the model’s ability to

adaptively suppress sparse erroneous measurements and

improve reconstruction accuracy.



Training Strategy

• The outputs of all phases in the DUN (𝑘 = 1,… , 𝐾) are supervised 

using the overall loss function:

ℒall ≔ σ𝑘=1
𝐾 𝛾𝑘 ℒg 𝒀𝑘 , 𝒀 + 𝜌ℒs 𝒀𝑘 , 𝒀 ,

where 𝜌 ∈ ℝ+, 𝛾𝑘 = 1/(𝐾 − 𝑘 + 1), and

ℒg 𝒀𝑘 , 𝒀 ≔
1

2𝐻𝑊𝐶
𝛁𝒀𝑘 − 𝛁𝒀 1,

ℒs 𝒀𝑘 , 𝒀 ≔
1

𝐻𝑊𝐶
σ𝑖,𝑗,𝑐 log cosh 𝒀𝑘 − 𝒀 𝑖,𝑗,𝑐 .



Evaluation on Synthetic Dataset

Boldfaced: best results.

Our DUN achieves the highest performance, while maintaining the second-

lowest parameter count and FLOPs.



Visualization on Synthetic Dataset

Our DUN provides the HDR image results with best visual quality.



Evaluation on Real-RGB Dataset

Our DUN yields the most authentic visual results for both samples.



Ablation Study and Analysis  

• Main components • Visualization of 𝑽

Predicted 𝑽 Binary map GT outliers GT HDR image



Conclusion and Future Work

• To conclude

✓ Reformulating the HDR reconstruction with modulo cameras, simplifying 

the reconstruction as direct inversion in gradient space for most pixels.

✓ Constructing the first deep unfolding network for modulo HDR, with an 

auxiliary variable to effectively handle outliers.

✓ Integrating spiking neuron-based modules to learn sparsity-related prior.

• In future

➢ Enhancing the robustness mechanism against outliers.

➢ Extending the DUN for other inverse problems involving modulo operators.



Take home messages

• HDR reconstruction with modulo cameras can be simplified by utilizing the

modulo-wrapped gradients of measurement.

• Incorporating physics into NN yields better performance and reduced complexity.

• A spiking neuron-based module is capable of enforcing sparsity regularization

with cumulative memory characteristics.

Thank you!


