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High Dynamic Range (HDR) Imaging
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Scene with high dynamic range Low dynamic range (LDR) Image

Due to the physical property of standard camera, natural scene with
high dynamic range (contrast) will be captured as the over(under)-
exposure areas In the captured photo.



High Dynamic Range (HDR) Imaging
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Modulo Camera for HDR Imaging

Modulo—wrapped
Modulo Sensor Measurement

Mechanism: Once the accumulated radiance value reaches pre-defined threshold,
e.g., 256 for an 8-bit sensor, It resets to zero and resumes counting, enabling a
theoretically unbounded dynamic range.

Formulation: Relationship between the HDR image and modulo measurement Is
X=m¥), M:M(y)=ymoda, a=2°,

* X € [0,a)""W*C: Modulo-wrapped measurement; Y € [0,28)#*Wx*C. HDR image.

Goal: Reconstruct the HDR Image Y from its modulo-wrapped measurement X.




Related Works

* Optimization using handcrafted prior.
£.g., MRF [1] uses graph-cut optimization with
smoothness prior enforced.

* Limited performance on real-world images with
complex patterns.

* Optimization using trained deep denoiser.

£.g., PnP-UA [Z] solves a variational regularization
model using a pre-trained denoising network.
x Effectiveness Is constrained due to the domain shift.
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[1] Zhao Hang, Shi Boxin, Fernandez-Cull Christy, et al. Unbounded High Dynamic Range Photography Using a Modulo Camera. ICCP, 2015.
[2] Bacca Jorge, Monroy Brayan, Arguello Henry. Deep Plug-and-Play Algorithm for Unsaturated Imaging. ICASSP, 2024.




Related Works

* Optimization leveraging untrained NN prior.

£.g., |3] optimizes a TV-regularized variational
model using an untrained decoder, leveraging
deep Image prior.

% High computational cost and inferior performance.

* Supervised End-to-end Network.

£.g., UnModNet [4] formulates modulo inversion
as a rollover classification problem.

% Insufficient generalization as it disregards the
Inherent properties of the physical imaging process.

[3] Jagatap Gauri, Hegde Chinmay. High Dynamic Range Imaging Using Deep Image Priors. ICASSP, 2020.
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[4] Zhou Chu, Zhao Hang, Han Jin, et al. UnModNet: Learning to Unwrap a Modulo Image for High Dynamic Range Imaging. NeurIPS, 2020.




Contributions

 Reformulation of the HDR reconstruction with modulo cameras In the

gradient space, leveraging ltoh’s continuity condition.

* The 15t deep unfolding network for HDR reconstruction with modulo

cameras, derived from a variational model using the reformulation, with

an auxiliary variable to effectively handle outliers.

* A spiking neuron-based module to learn a sparsity-related prior for
outliers, enhancing the performance of HDR reconstruction.

* Superior performance over existing methods on synthetic & real datasets.



Reformulation of Modulo HDR

Proposition 1. [Extension of 2D Itoh s continuity condition [5]]

Given an HDR image Y and its modulo counterpart X = M'(Y). Let M denote
another modulo operator defined by M (y) = [(y + a/2) mod a] — a/2. For any

point with index (i, j) satisfying ”VYiJ”m = max{leYi,jl, |Vle-,j|} < a/2,we have
M(VXLJ) — Vyl,]
This property simplifies the HDR reconstruction by allowing direct

iInversion of the modulo operation In the gradient domain for pixels
within this bound.

[5] Zhile Chen, Yuhui Quan, Hui ji. Deep Unsupervised Unrolling Networks for Phase Unwrapping. CVPR 2024.



Optimization Model

* Introducing an auxiliary variable V to mitigate the impact of outliers, define an
optimization problem for modulo HDR reconstruction: sparsity ]

m1n||VY (M(VX) —V) || + ®(Y) + O(V) < _regularization

* Unfold its iterative scheme of sub-problems using proximal gradient descent solver.
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Deep Unfolding Network

* Implement each iteration as a phase block in the proposed DUN:
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Spiking Neuron-based Module

* Employ the Leaky Integrate-and-Fire (LIF) model [6].
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adaptively suppress sparse erroneous measurements and
iImprove reconstruction accuracy.

[t Spiking Neuron
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[6] Wang Siqi, Cheng Tee Hiang, Lim Meng-Hiot. LTMD: Learning Improvement of Spiking Neural Networks with Learnable Thresholding Neurons and Moderate Dropout. NeurIPS 2022.
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Training Strategy

* The outputs of all phases in the DUN (k =1, ..., K) are supervised
using the overall loss function:

Lall = Zlé:l ) 4% (Lg(yk) Y) T pLS(Yk) Y)) )
where p € R*,y, = 1/(K —k + 1), and

1
LoV, Y) = —— VY — VY]],

1 .
LY, Y) = H_W(Jzi'j'c lOg(COSJ(Yk — Y)i,j,c)-




Evaluation on Synthetic Dataset

Boldfaced: best results.

Method NRMSE(%) PSNR(dB) SSIM MS-SSIM | Param(M) FLOPs(G)
MRF 45.15 25.08 0.38 0.55 / /
PnP-UA 28.35 29.38 0.34 0.51 32.64 574.44
UnModNet 6.64 40.42 0.98 0.97 40.83 310.46

ExpandNet! 11.74 21.20 0.55 0.59 0.46 53.80
ExpandNet 10.18 23.57 0.80 0.78 0.46 53.80
Santos et al. 19.52 10.89 0.21 (.32 51.54 75.77
Santos et al. 7.85 39.09 0.98 0.97 51.54 15.77

UFormer 715 42.34 0.98 0.98 20.60 164.36
Ours 5.56 42.56 0.99 0.98 4.15 62.73

Our DUN achieves the highest performance, while maintaining the second-

lowest parameter count and FLOPs.



Visualization on Synthetic Dataset

Modulo PnP-UA Santos er al. UnModNet UFormer

Our DUN provides the HDR image results with best visual quality.



Evaluation on Real-RGB Dataset

Modulo PnP-UA UnModNet Santos et al. UFormer Ours

Our DUN vyields the most authentic visual results for both samples.



Ablation Study and Analysis

* Main components

Baseline NRMSE(%)PSNR(dB) SSIM MS-SSIM
wlo V 6.56 41.43 0.98 0.98
SN—Th 6.30 41.79 0.98 0.98
AGD—GD 3:97 41.55 0.98 0.98
LogCosh— ¢, 5.72 42.28 0.99 0.98
Original 5.56 42.56 0.99 0.98

* Visualization of V
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Predicted V Binary map GT outliers ~ GT HDR image



Conclusion and Future Work

* To conclude

v Reformulating the HDR reconstruction with modulo cameras, simplifying
the reconstruction as direct inversion in gradient space for most pixels.

v' Constructing the first deep unfolding network for modulo HDR, with an
auxiliary variable to effectively handle outliers.

v" Integrating spiking neuron-based modules to learn sparsity-related prior.
* In future

» Enhancing the robustness mechanism against outliers.

» Extending the DUN for other inverse problems involving modulo operators.



Take home messages

* HDR reconstruction with modulo cameras can be simplified by utilizing the
modulo-wrapped gradients of measurement.

* Incorporating physics into NN yields better performance and reduced complexity.

* A spiking neuron-based module I1s capable of enforcing sparsity regularization

with cumulative memory characteristics.

Thank you!



