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* Motivation:
» Softmax 1s too expansive, especially the sequence is very long (high resolution image, video

).
* Replace Softmax Attention with Linear Attention.
G(N?d) G(Nd?)
X Computational Efficiency v Computational Efficiency
v Modeling Capability X Modeling Capability
N
v _ $(Q:)o(K;)" v,
t N
j=1 Zm:l ¢(Q%)¢(Km)T
N
A(Q:) (=1 9(K;)"V5)

)

$(Q:) (X1 $(Km)T)

Softmax Attention Linear Attention

9/29/2025 3



[ICCV’25 | Rectifying Magnitude Neglect in Linear Attention

* Motivation:
* Linear Attention has poor performance.
* Over-smooth
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e Motivation:

* Query’s Magnitude impact the degree of concentration
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* Method:
* Magnitude-Aware Linear Attention.
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* Method:
* Magnitude-Aware Linear Attention.
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Experiments
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* Vision & Language & Audio
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®-  MAViT(ours)
~  Vmamba(NeurIPS2024)

MILA(NeurIPS2024)
InLine-CSwin(Neur[PS2024)
RMT(CVPR2024)
MogaNet(ICLR2024)
BiFormer(CVPR2023)
STVIT(CVPR2023)
FLatten-CSwin(ICCV2023)
FLatten-Swin(ICCV2023)
CSwin(CVPR2022)
CMT(CVPR2022)
ConvNeXt(CVPR2022)
Swin(ICCV2021)

Model LMB1T PIQAT Hella WinofT ARC-etT ARC-ct|Avgt

Transformer | 31.0
RetNet 28.6
GLA 30.3

63.3 340 504 445
63.5 335 525 44.5
648 345 514 451

24.2
234
22.7

41.2
41.0
41.5

MALA 31.0

650 345 519 454

23.6

419

Table 1. MALA in NLP.
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Figure 5. Comparison of general backbones’ inference speed on
low resolution task (image classification, resolution 224 x 224).

The inference speed are measured on A100, batch size 64.
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Figure 6. Comparison of general backbones’ inference speed on
high resolution task (semantic segmentation with UperNet, reso-
lution 512 x 2048). The inference speed are measured on A100,
batch size 1.
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testclean] testother] testclean| testother)

Conformer(S) 10.3 2.7

6.3 2.1 5.0

Linear Attn 10.3 3.4
InLine Attn 10.3 3.1
MALA 10.3 24

10.2 2.6 73
9.6 2.5 7.3
5.3 1.9 4.2

Table 2. MALA in speech recognition.

Model | FLOPs

Throughputt \ FID| ISt

DiT-S/2(400K) [41] | 250x6.06G
DiG-S/2(400K) [58]|250%x4.30G
DiC-S/2(400K) [48]|250x5.90G

4.9imgs/s |68.40 -
3.8imgs/s [62.06 22.81
- 58.68 25.82

MALA (400K) |250x4.26G

5.6imgs/s |49.62 32.18

Table 8. MALA for diffusion.
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