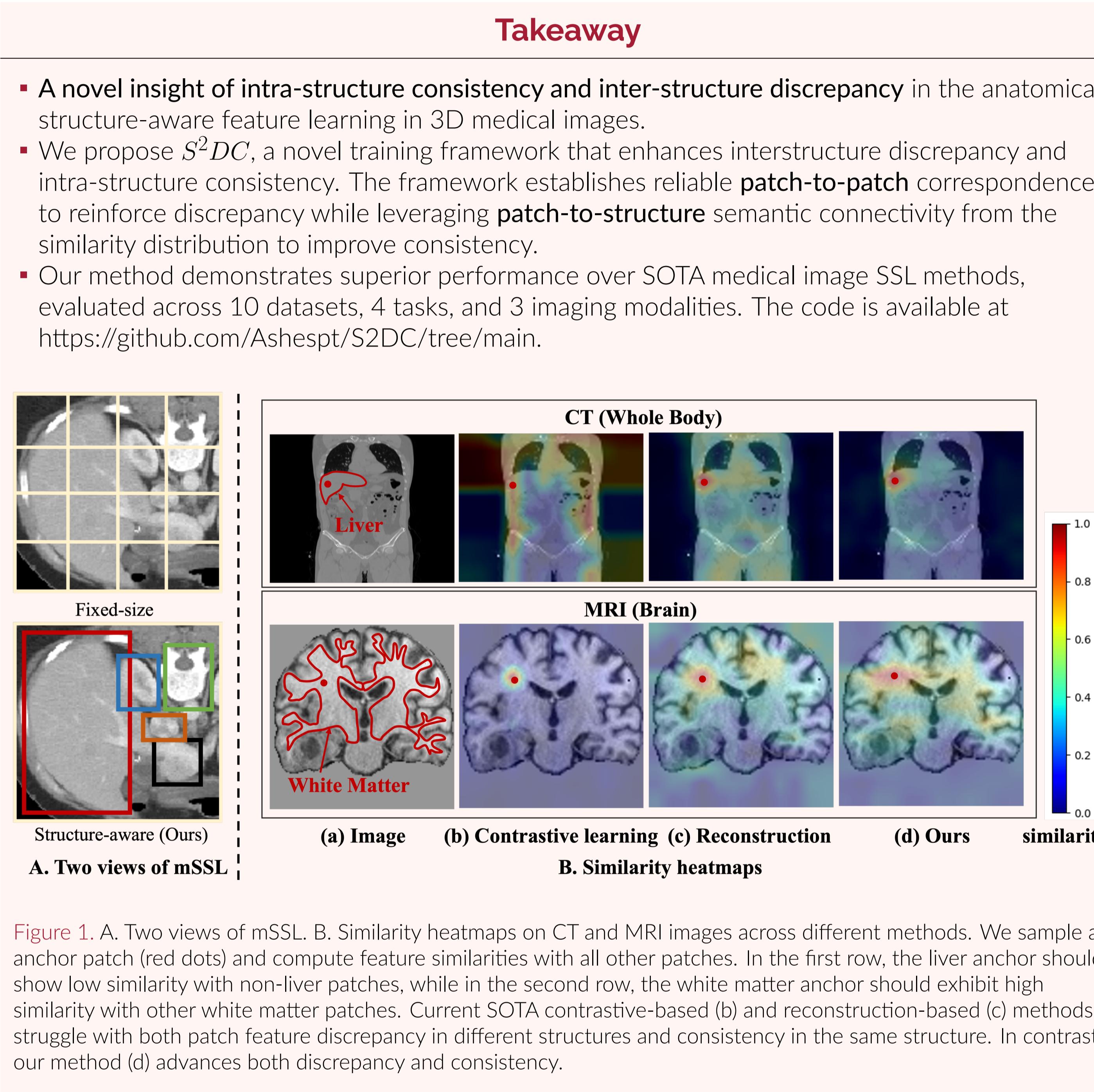


Structure-aware Semantic Discrepancy and Consistency for 3D Medical Image Self-supervised Learning

Tan Pan^{1,2} Zhaorui Tan² Kaiyu Guo^{3,2} Dongli Xu² Weidi Xu² Chen Jiang² Xin Guo² Yuan Qi^{1,2,4} Yuan Cheng^{1,2}

¹Artificial Intelligence Innovation and Incubation Institute, Fudan University ²Shanghai Academy of Artificial Intelligence for Science
³The University of Queensland ⁴Zhongshan Hospital, Fudan University



Experiments and Analysis

Method	Accuracy(%)
	10% 50% 100%
Swin-UNETR	77.15 92.28 94.15
SwinMM	87.87 93.50 94.80
VoCo	86.73 92.43 94.60
S^2DC	88.29 93.89 95.34

Method	\mathcal{L}_g	\mathcal{L}_{p2p}	\mathcal{L}_{p2s}	BTBV DICE(%)
Baseline(\mathcal{L}_g)	•	•	•	83.43 45.72
	•	•	•	83.98 45.85
	•	•	•	84.02 46.23
	•	•	•	84.14 46.47

Table 1. Experiment results on CC-CCII with various ratios of the training data. 10%, 50%, and 100% represent ratios.

Seeking postdoctoral positions and collaborations in AI4Healthcare.

pant23@m.fudan.edu.cn

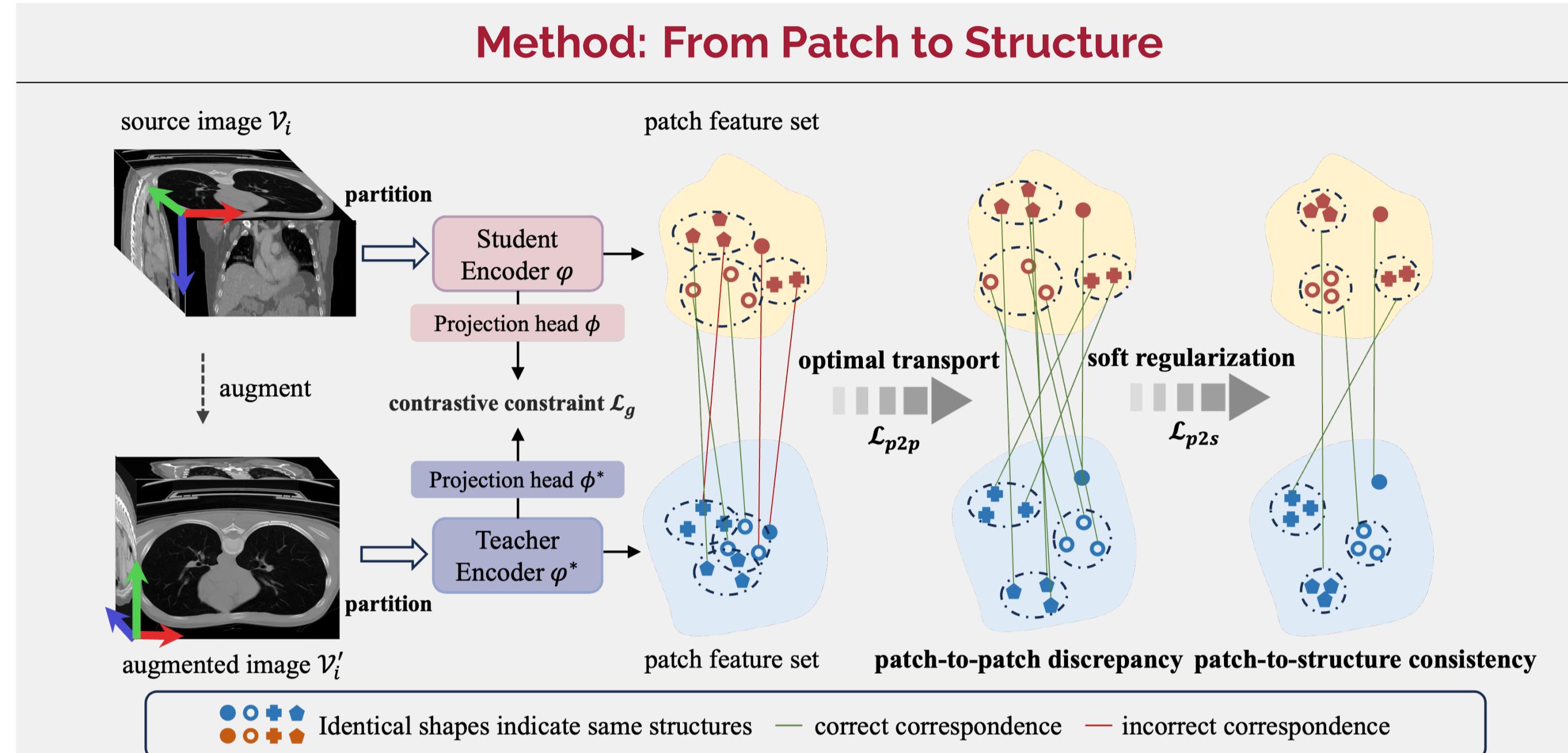


Figure 2. The pipeline of our SSL framework. S^2DC is established on patch features (i.e., token feature in vision transformer) and incorporates two main steps: (1) Patch-to-patch discrepancy. (2) Patch-to-structure consistency.

Stage 1: Patch-to-patch correspondence

Given two patch centers $c_i = (x_i, y_i, z_i)$ and $c_j = (x_j, y_j, z_j)$ from a volume \mathcal{V}_i and its augmented \mathcal{V}'_i , we have the GT correspondence:

$$\mathcal{M}_{gt}(i, j) \triangleq \begin{cases} 1 & \text{if } \langle H(c_i), c_j \rangle \wedge \langle H^{-1}(c_j), c_i \rangle, \\ 0 & \text{else.} \end{cases} \quad (1)$$

Then, we can calculate the similarity map \mathcal{M}_t between tokens and get the loss between \mathcal{M}_t and \mathcal{M}_{gt} . By applying the dual-softmax operator:

$$\hat{\mathcal{M}}_t(i, j) = \text{softmax}(\mathcal{M}_t(i, \cdot)) \cdot \text{softmax}((\mathcal{M}_t(\cdot, j)). \quad (2)$$

The patch-to-patch loss \mathcal{L}_{p2p} is:

$$\mathcal{L}_{p2p} = -\frac{1}{|\mathcal{M}_{gt}|} \sum_{i=0}^N \sum_{j=0}^N \mathcal{M}_{gt}(i, j) \times \log(\hat{\mathcal{M}}_t(i, j)), \quad (3)$$

Stage 2: Patch-to-structure semantic connectivity

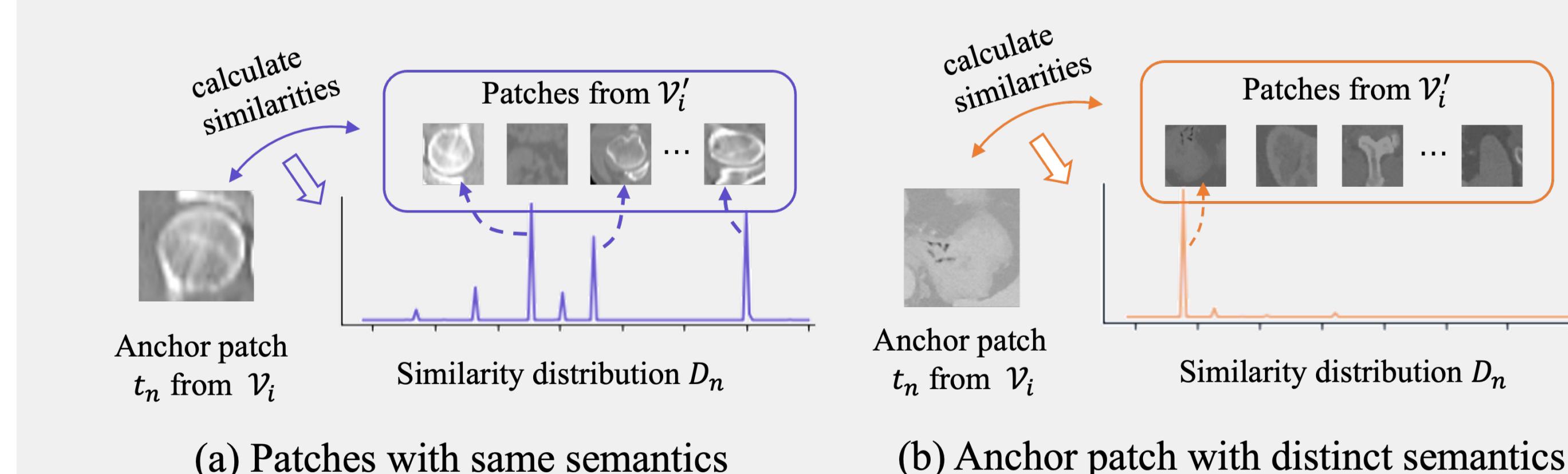
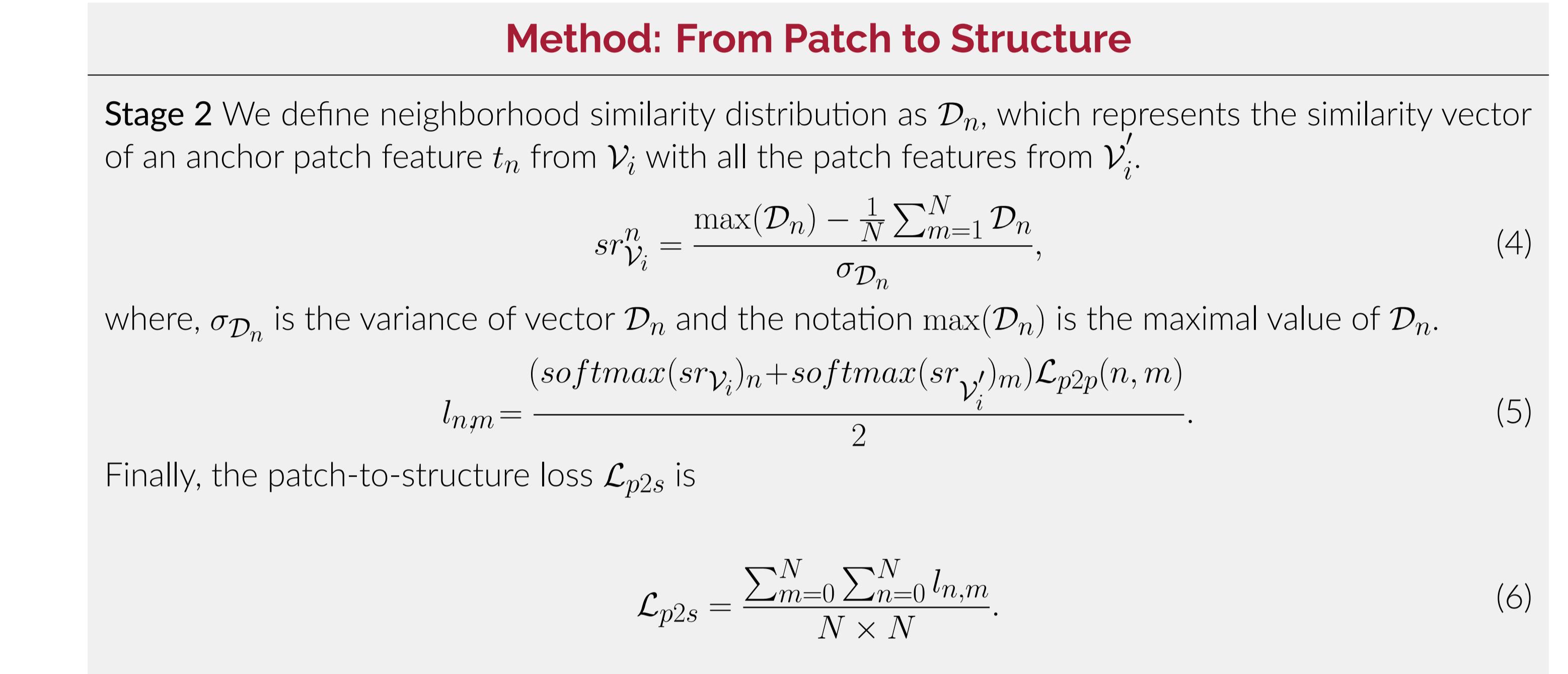


Figure 3. Illustration of the similarity distribution D_n . (a) Patches with the same semantics (e.g., bone). Given an anchor patch, patches from the same semantics form several peaks in D_n . (b) Anchor patch with distinct semantics (e.g., pancreas), D_n shows only one large peak (its augmented patch).



Experiments and Analysis

Overall comparisons on 10 downstream datasets. The results demonstrate that S^2DC performs effectively across 10 datasets and 4 tasks. Compared to training from scratch, which achieves an average score of 77.93%, S^2DC pre-training delivers a 3.5% improvement, reaching 81.43%. Additionally, S^2DC outperforms the second-best SSL method (VoCo, average score 80.65%) for all tasks, with an average gain of 0.78%.

Task	Dataset	Modality
Segmentation	BTBV [19]	CT
	MSD-Liver [29]	CT
	MSD-Lung [29]	CT
	MSD-Spleen [29]	CT
	BraTs 21 [29]	MRI
Classification	AUTOPET [10]	PET
	CC-CCII [46]	CT
Reconstruction	ADNI-cls [22]	PET
	UDPET [4]	PET
I2I translation	BraTs 23 [29]	MRI

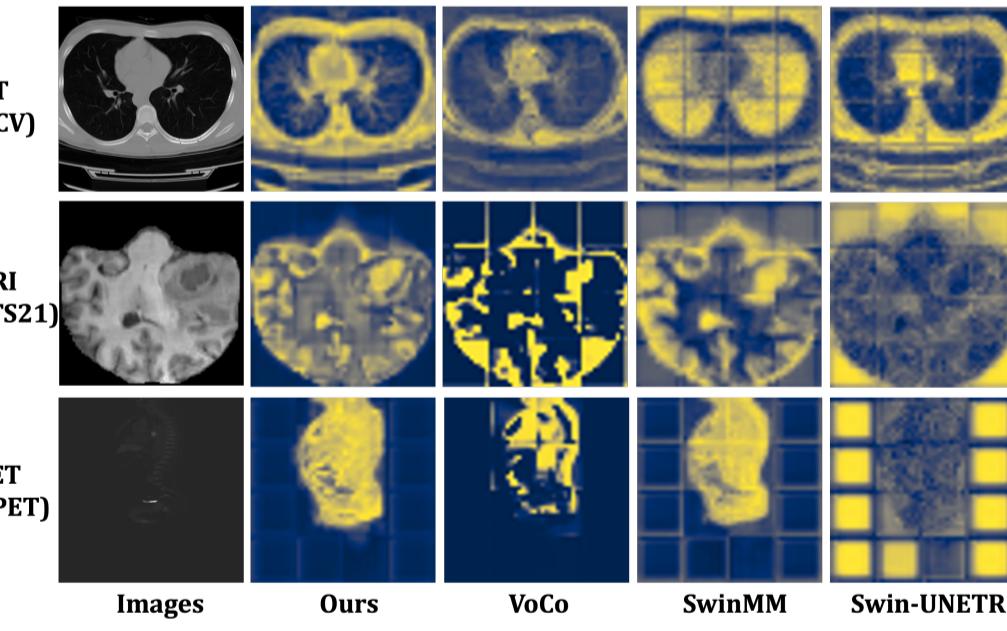


Figure 4. The downstream tasks and modalities.

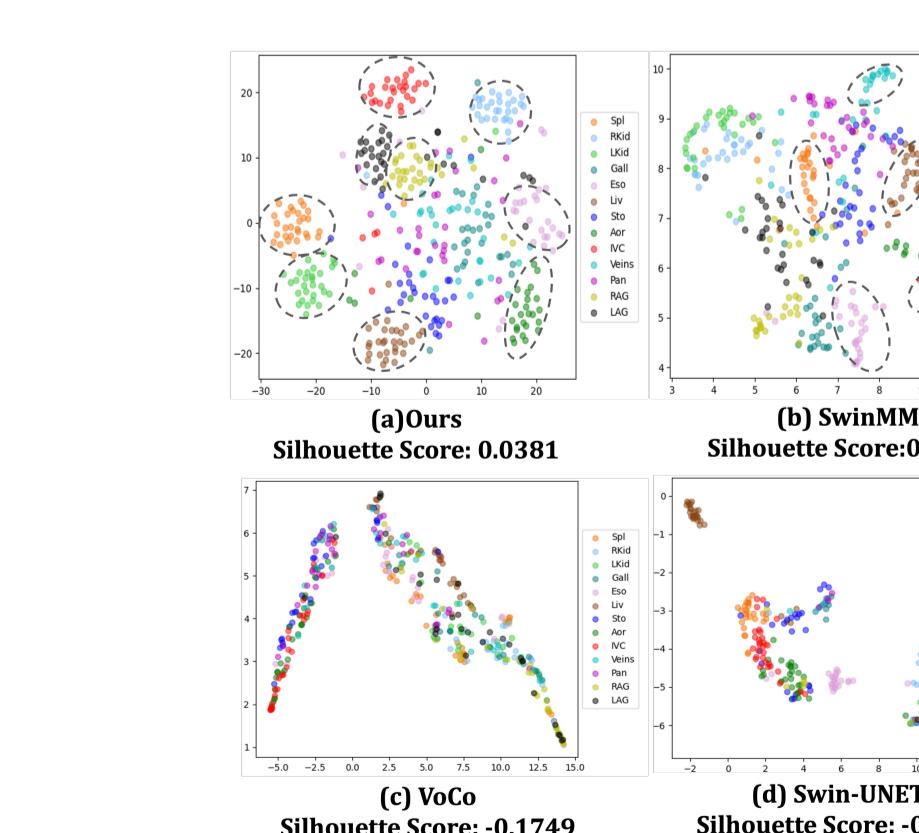


Figure 5. The t-SNE feature visualization of different losses on 13 organs on the BTBV dataset.

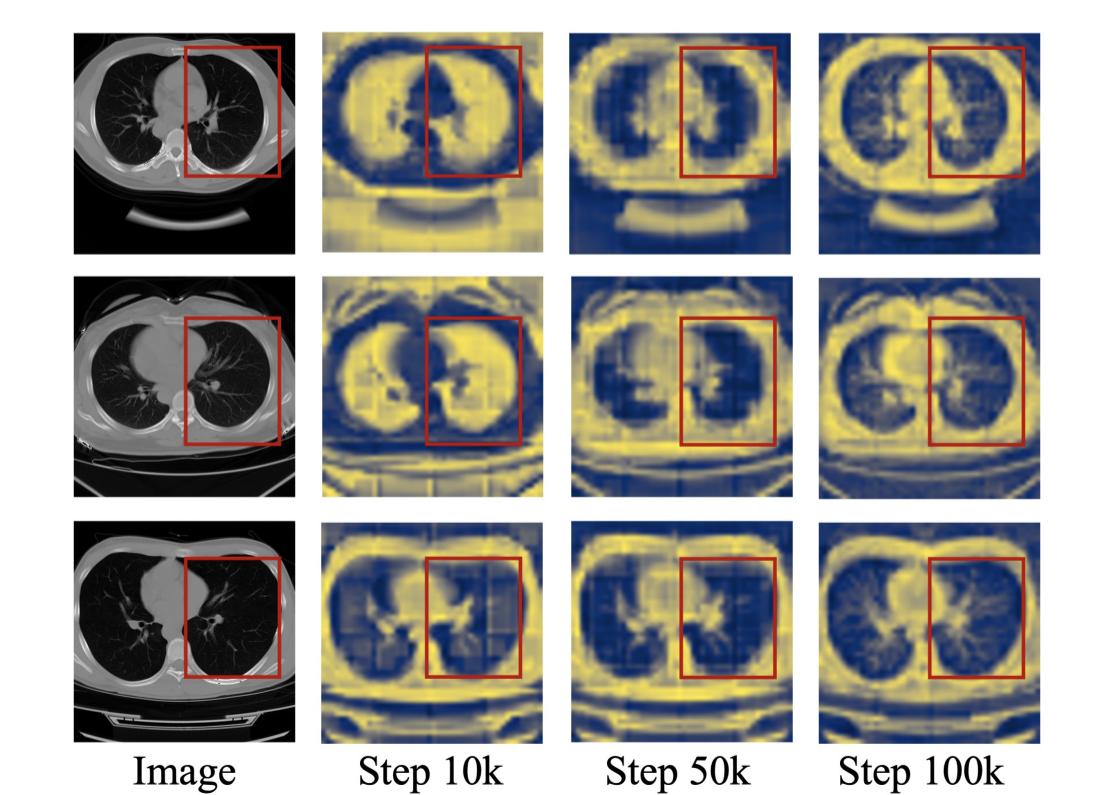


Figure 6. The evolution of patch-to-structure correspondences.