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Method: From Patch to Structure

= A novel insight of intra-structure consistency and inter-structure discrepancy in the anatomical
structure-aware feature learning in 3D medical images.

= We propose S2DC, a novel training framework that enhances interstructure discrepancy and
intra-structure consistency. The framework establishes reliable patch-to-patch correspondences
to reinforce discrepancy while leveraging patch-to-structure semantic connectivity from the
similarity distribution to improve consistency.

= Our method demonstrates superior performance over SOTA medical image SSL methods,
evaluated across 10 datasets, 4 tasks, and 3 imaging modalities. The code is available at
https:/github.com/Ashespt/S2DC/tree/main.
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Figure 1. A. Two views of mSSL. B. Similarity heatmaps on CT and MRI images across different methods. We sample an
anchor patch (red dots) and compute feature similarities with all other patches. In the first row, the liver anchor should
show low similarity with non-liver patches, while in the second row, the white matter anchor should exhibit high
similarity with other white matter patches. Current SOTA contrastive-based (b) and reconstruction-based (c) methods
struggle with both patch feature discrepancy in different structures and consistency in the same structure. In contrast,
our method (d) advances both discrepancy and consistency.
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Figure 2. The pipeline of our SSL framework. S?DC is established on patch features (i.e., token feature in vision
transformer) and incorporates two main steps: (1) Patch-to-patch discrepancy. (2) Patch-to-structure consistency.

Stage 1: Patch-to-patch correspondence

Given two patch centers ¢; = (x;,y;, 2;) and ¢; =
we have the GT correspondence:

Mgt@ ]) {

Then, we can calculate the similarity map My between tokens and get the loss between M; and M 4.
By applying the dual-softmax operator:

My(i, 7) = softmaz(M4i,)) -softmaz((Mq( 7). (2)
The patch-to-patch loss Ly, is:

(z4,y4,2;) from a volume V; and its augmented V
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0 else.
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Stage 2: Patch-to-structure semantic connectivity
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Method: From Patch to Structure

Stage 2 VWe define neighborhood similarity distribution as D,,, which rep,)resents the similarity vector
of an anchor patch feature ¢, from V; with all the patch features from V..

87“)7}2, ma:x:( ) Zm 1 D (4)

op,,
where, op_is the variance of vector D;, and the notation max(Dy,) is the maximal value of D,,.

(softmax(sry, )n+softmaz(sr, s )m)Lpop(n, m)

Vz’
ln,m: 9 : (5)
Finally, the patch-to-structure loss Lo is
N N
Lpos = Zm:O Z??,:O ln,m (6)
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Experiments and Analysis

Overall comparisons on 10 downstream datasets. The results demonstrate that S2DC performs effec-
fively across 10 datasets and 4 tasks. Compared to training from scratch, which achieves an average
score of 77.93%, S?DC pre-training delivers a 3.5% improvement, reaching 81.43%. Additionally, S?DC
outperforms the second-best SSL method (VoCo, average score 80.65%) for all tasks, with an average
gain of 0./8%.

Task Dataset Modality
BTCV [19] CT
MSD-Liver [29] CT
i MSD-Lung [29] CT
Segmentation MSD-Spleegn 291  CT
BraTs 21 [29] MRI
AUTOPET [10] PET
Classification CC-CCII [46] CT
ADNI-cls [22] PET (UDPET)
Reconstruction UDPET [4] PET PV ——
121 translation BraTs 23 [29] MRI

Figure 5. The visualization of the first principal components

Figure 4. The downstream tasks and modalities. after applying PCA to token features.

Swin-UNETR 77.15 92.28 94.15 Baseline(L) *Lppp +Lpps _ DICED)
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VoCo 36.73 92.43 94.60 X S
2 . .
S2DC 88.29 93.89 95.34 X S ol s

Table 1. Experiment results on CC-CCII with various ratios

of the training data. 10%, 50%, and 100% represent ratios.
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Table 2. The ablation results of different constraints.
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Figure 3. lllustration of the similarity distribution D,,. (a) Patches with the same semantics (e.g., bone). Given an anchor
in D,,. (b) Anchor patch with distinct semantics (e.g.,
pancreas), D,, shows only one large peak (its augmented patch).

patch, patches from the same semantics form several peaks

Figure 6. The t-SNE feature visualization of different losses
on 13 organs on the BTCV dataset.
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Figure /. The evolution of patch-to-structure
correspondences.
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