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Video Model’s Deployment

Large-Scale Data &
Large-Scale Computation
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Some researchers focus on improving performance, 
but overlook downstream tasks.

Others aim for lightweight deployment, 
yet remain constrained by upstream systems.

Bigger and Stronger Faster and Cheaper

 

Efficient deployment of upstream systems via Input Compression:
Bigger and Stronger, while remain Faster and Cheaper.

Compression
Quantization

Performance

FluxViT: Train Once, Deploy Anywhere

Training Method

yoga

Navigation: For the Blind
To Understand The World 

Action Recognition Action Detection

Key Takeaways

Common methods (left): 
Use rigid sampling and directly use token reduction for deployment.

Flux (right):
Employs flexible sampling and token selection for Token Optimization.

FluxViT deployed across varying computational budgets.

Illustration of the proposed Flux-ViT module.

Flux integrated with the Unmasked Teacher framework.
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Confict

t_token = [2048]
s_tokens = [1024, 1536, 2048]
resolution = random.choice([
  112, 168, 196, 224, 256, ...
])
frame = random.choice([
  4, 6, 8, 10, 12, 14, 16, ...
])
mask_ratio = calculate(
    token, resolution, frame
)
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Method & Arch K400 w/ TO SSv2 w/ TO
Vanilla + ViT 78.4 78.4 65.4 65.4
Vanilla + FluxViT 79.3 79.6 (↑1.2) 66.0 66.4 (↑1.0)
Flux-Single + ViT 79.2 80.3 (↑1.9) 66.3 67.3 (↑1.9)

With new positional embeddings
w/ RoPE 79.5 80.7 (↑0.4) 66.5 67.5 (↑0.2)
w/ GPE 79.4 80.5 (↑0.2) 66.4 67.4 (↑0.1)
w/ LPE 79.7 81.0 (↑0.7) 66.8 68.3 (↑1.0)
w/ GLPE 79.9 81.3 (↑1.0) 67.0 68.6 (↑1.3)

With DPN
w/ DPN 79.8 81.2 (↑0.9) 66.9 68.4 (↑1.1)

Combining the two modules
Flux-Single + FluxViT 80.5 81.7 (↑3.3) 67.6 69.3 (↑3.9)
Flux-Multi + FluxViT 81.4 82.4 (↑4.0) 68.4 70.0 (↑4.6)

Table 3. Results with 8×2242(and TO w/ 2048 tokens, which is
the same token count as in 8×2242) on K400 and SSv2. (↑) for
absolute improvement and (↑) for relative gain. Vanilla means
PT and FT without Flux augmentation.

Settings 8×2242 2048 + TO
K400 SSv2 K400 SSv2

Baseline 80.5 67.6 81.7 69.3
Change Tthres to (2048, 6144) 80.1 67.2 81.2 68.7
w/o varied spatial resolution 80.5 67.7 81.4 69.1
enlarge Fmax to 32 80.4 67.4 81.6 69.1
enlarge Resmax to 336 80.2 67.3 81.4 69.0

Table 4. Ablations on hyper-parameter on sampling designs
for Flux-Single training with FluxViT. Most settings regarding
flexible sampling cause only minor influences except Tthres.

Pre-training Fine-tuning Test Length
Length Length 2048 1024 512

∅(w/o Flux) ∅ 79.3 74.7 62.1
Single Single 80.5 77.4 65.8
Single Multi(w/ align) 80.3 79.0 75.0
Multi Single 81.0 78.8 70.2
Multi Multi 80.9 79.1 73.3
Multi Multi(w/ align) 81.4 80.3 76.6

Table 5. Ablation on using varied input lengths in training
FluxViT on K400. Results are tested with fixed 8×2242 input
but varied test token lengths based on our selector.

shown, this tuning method can harvest a +1.9% top-1 accu-
racy gain on K400 compared with the normal distilled and
normal tuned method while nearly bringing no computation
increment throughout pre-training and fine-tuning.

Table 1 further shows that only combining Flux-Tuning
and Token Optimization on a competitive model pre-trained
with standard setting can achieve non-trivial gain, highlight-
ing that the sampling and selection module in Flux can ef-
fectively serve as novel augmentation tools.

Token Selection Module. We test four token selection
methods for Flux-Single, including random, tube, dynamic

Model Extra Data #P(M) GFLOPs Top-1
TimeSformer-L [5] - 121 2380×3 80.7
VideoSwin-L [50] IN-21K 197 604×12 83.1
VideoMAE-L [66] - 305 3958×21 86.1
CoVeR-L [87] JFT-3B+SMI 431 5860×3 87.1
UniFormerV2-L [39] CLIP-400M+K710 354 12550×6 90.0
UMT-L [42] K710 431 5860×3 90.6
VideoMAE2-H [72] UnlabeledHybrid 633 1192×15 88.6
ViViT-H [2] JFT-300M 654 3981×12 84.9
MTV-H [82] IN-21K+WTS-60M 1000+ 6130×12 89.9
CoCa-G [85] JFT-3B+ALIGN-1.8B 1000+ N/A×12 88.9
MViTv1-B [19] - 37 70×5 80.2
MViTv2-B [44] - 37 255×5 81.2
ST-MAE-B [21] K600 87 180×21 81.3
VideoMAE-B [66] - 87 180×15 81.5
VideoSwin-B [50] IN-21k 88 282×12 82.7
UniFormer-B [40] IN-1k 50 259×12 83.0
UMT-B [42] K710 87 180×12 87.4
InternVideo2-B [77] K710+MASH 96 440×12 88.4

440×12 88.7 89.4FluxViT-Be200 - 97 49×12 84.0 86.7
440×12 89.6 90.0
255×12 89.3 89.7
108×12 87.3 88.9FluxViT-Be100 K710+MASH 97

49×12 84.7 87.4
UniFormer-S [40] IN-1k 21 42×4 80.8
MViTv2-S [44] - 35 64×5 81.0
VideoMAE-S [66] - 22 57×15 79.0
VideoMAE2-S [72] - 22 57×15 83.7
InternVideo2-S [77] K710+MASH 23 154×12 85.8

154×12 86.4 87.3FluxViT-Se200 - 24 13×12 79.7 84.0
154×12 87.7 88.0
83×12 87.3 87.7
32×12 84.7 86.6FluxViT-Se100 K710+MASH 24

13×12 80.1 84.7

Table 6. Comparison with the state-of-the-art methods with
on scene-related Kinetics-400. #P is short for the number of pa-
rameters. The blue values of FluxViT show results using larger
spatiotemporal resolutions but keeping fixed input token count to
3072, 2048, 1024, and 512 respectively, corresponding to the four
GFLOPs listed. SMI is short for the train set of SSv2, MiT and
ImageNet and MASH for MiT, ANet, SSv2 and HACS.

(as also directly used in [31]) and our group-dynamic
method. We further ablate the token dynamics measure-
ment and the sparse group size. Table 2 shows that our
group-dynamic strategy with token dynamics measured by
L2-distance of tokens within adjacent frames in sparsely
divided four groups is the most robust among the token-
selection methods. More advanced token selectors can be
utilized for better results but with increased complexity,
cost, and tedious hyperparameters.

FluxViT Modules. Table 3 analyzes the impact of our pro-
posed plug-in modules. The inclusion of Global-Local
positional embedding can strengthen the model’s robust-
ness when processing sparse tokens derived from larger
spatiotemporal resolutions. We compare our GLPE with
ROPE [63] within our Flux scheme and show better results

Comparison on scene-related task: Kinetics-400.

Model Extra Data GFLOPs Top-1 Top-5
TimeSformer-L [5] IN-21k 2380×3 62.3 -
MViTv1-B [19] K400 455×3 67.7 70.9
MViTv2-B [44] K400 255×3 70.5 92.7
VideoMAE-B [66] K400 180×6 69.7 92.3
VideoMAE-L [66] K400 596×6 74.0 94.6
UniFormerV2-B [39] CLIP-400M 375×3 70.7 93.2
UniFormerV2-L [39] CLIP-400M 1718×3 73.0 94.5
UMT-B [42] K710 180×6 70.8 92.4
InternVideo2-B [77] K710+MASH 253×6 73.5 94.4

440×6 75.3 75.6 95.1 95.1
255×6 75.1 75.5 94.9 95.1
108×6 72.0 75.1 93.3 94.8FluxViT-B K710+MASH

49×6 56.8 73.9 84.8 94.4
UniFormer-S [40] IN-1K 42×3 67.7 91.4
VideoMAE-S [66] K600 57×6 66.8 90.3
InternVideo2-S [77] K710+MASH 83×6 71.5 93.4

154×6 73.4 73.8 94.1 94.1
83×6 72.9 73.4 94.0 94.1
32×6 70.0 72.5 93.4 93.8FluxViT-S K710+MASH

13×6 55.3 70.9 83.7 93.1

Table 7. Comparison with the state-of-the-art methods with on
motion-intensive SSv2. Our model achieves far better results.

with LPE illustrated in the Method section. Furthermore,
adding a dual patch norm module optimizes the perfor-
mance gains in TO. Combining the two modules achieves
+3.3% and +3.9% on K400 and SSv2 respectively with TO.

Hyper-parameters of flexi-sampling Table 4 gives abla-
tion studies on the results of different hyper-parameters re-
garding sampling. Most settings regarding flexible sam-
pling cause only minor influences except Tthres. A proper
scale of the flexible space is the most powerful.

Flux-Multi training. We compare our proposed method of
co-training with three input numbers(2048, 1024, 512) in
both pretraining and tuning in Table 5 and also validate the
tuning effects on well-pretrained InternVideo2-S in table
1(3072, 2048, 1024). As shown, pre-training with multiple
token numbers can not only boost performance under stan-
dard settings but also increase model consistency in input
token sparsity. Tuning with different token numbers with
a smoothed-L1-loss based self-distillation mechanism can
further enhance such alignment consistently.

4.2. Single Modality Results
We scale up the training data using the K-MASH[77]
dataset of 1.1 million samples, aligning with the data em-
ployed in the Internvideo2-Distilled series models, includ-
ing K710, SSv2[23], ANet[28], HACS[89], and MiT[56].
We train the FluxViT model using a total batch size of 2048
for 100 epochs. FluxViT’s performance is validated using
scene-based K400, motion-intensive SSv2, and long-term
COIN with Token Optimization.

K400. Table 6 reports our results compared with the pre-
vious solutions on K400. We set 3072, 2048, and 1024

Model e2e BackBone Top-1
Distant Supervision [47] ✗ TimeSformer 90.0
ViS4mer [32] ✗ Swin-B 88.4
Turbof32 [25] ✓ VideoMAE-B 87.5
VideoMambaf64 [43] ✓ VideoMamba-S 88.7
VideoMambaf64 [43] ✓ VideoMamba-M 90.4
InternVideo2f12 [77] ✓ InternVideo2-S 90.0
MA-LMM [26] ✓ MLLM 93.2
HERMES [33] ✓ MLLM 93.5
FluxViT3072 ✓ FluxViT-S 91.8 92.1
FluxViT2048 ✓ FluxViT-S 91.5 91.9
FluxViT1024 ✓ FluxViT-S 89.8 91.0
FluxViT3072 ✓ FluxViT-B 93.9 94.1
FluxViT2048 ✓ FluxViT-B 93.7 93.9
FluxViT1024 ✓ FluxViT-B 92.5 93.2

Table 8. Comparison with the state-of-the-art on long-form
video classification COIN dataset. We report the results based
on our preset token number, with the left line using unmasked 12,
8, 4 frames, and 224 spatial resolution while the blue values show
results that can be achieved using more informative tokens.

as our token numbers in Flux-Multi-Tuning. For our
FluxViT-S, we report 88.0%(+2.2%) on K400 compared
with InternVideo2-S, which is the previous SOTA solution,
while still achieving 84.7% with nearly the same com-
putation as the lightweight network UniFormer [40] but
with competitive accuracy. For fair comparison without
K-MASH, we pretrain FluxViT using only K400 in Flux-
UMT, which also shows much better results.

SSv2. Table 7 shows our model’s performance in deal-
ing with motion-intensive video understanding tasks. Our
FluxViT-S and FluxViT-B models set new state-of-the-art
performance on SSv2 with either standard or limited com-
putation cost. For FluxViT-B, we achieve 75.6% with stan-
dard computation while still achieving 75.1% with only
25% cost of the standard setting. Previous work [88] in-
stead gets a huge performance drop using 2 frames, which
corresponds to the least computation listed.

COIN. Table 8 shows our model’s performance in dealing
with long-form video understanding tasks. Our FluxViT-S
and FluxViT-B models set new state-of-the-art performance
on COIN with either standard or limited computation cost.

4.3. Multi Modality Retrieval Results
We use the pre-trained FluxViT with the CLIP [60] frame-
work and our Flux method to train a video clip model us-
ing 27M corpus, far lower than most baseline models, in-
cluding 25M coarse level caption data: Webvid10M [3],
CC3M [62], COCO [46], VG [35], SBU [57], CC12M [11]
and 2M high-quality data: S-MiT [55], InternVid-2M-
Recap [76]. We leverage MobileClip-B [67] as the text en-
coder and only use the vanilla VTC loss, which is short for
Video-Text Contrastive loss in training. We only unfreeze
the ViT projector for the first stage using the 25M coarse

Model Extra Data GFLOPs Top-1 Top-5
TimeSformer-L [5] IN-21k 2380×3 62.3 -
MViTv1-B [19] K400 455×3 67.7 70.9
MViTv2-B [44] K400 255×3 70.5 92.7
VideoMAE-B [66] K400 180×6 69.7 92.3
VideoMAE-L [66] K400 596×6 74.0 94.6
UniFormerV2-B [39] CLIP-400M 375×3 70.7 93.2
UniFormerV2-L [39] CLIP-400M 1718×3 73.0 94.5
UMT-B [42] K710 180×6 70.8 92.4
InternVideo2-B [77] K710+MASH 253×6 73.5 94.4

440×6 75.3 75.6 95.1 95.1
255×6 75.1 75.5 94.9 95.1
108×6 72.0 75.1 93.3 94.8FluxViT-B K710+MASH

49×6 56.8 73.9 84.8 94.4
UniFormer-S [40] IN-1K 42×3 67.7 91.4
VideoMAE-S [66] K600 57×6 66.8 90.3
InternVideo2-S [77] K710+MASH 83×6 71.5 93.4

154×6 73.4 73.8 94.1 94.1
83×6 72.9 73.4 94.0 94.1
32×6 70.0 72.5 93.4 93.8FluxViT-S K710+MASH

13×6 55.3 70.9 83.7 93.1

Table 7. Comparison with the state-of-the-art methods with on
motion-intensive SSv2. Our model achieves far better results.

with LPE illustrated in the Method section. Furthermore,
adding a dual patch norm module optimizes the perfor-
mance gains in TO. Combining the two modules achieves
+3.3% and +3.9% on K400 and SSv2 respectively with TO.

Hyper-parameters of flexi-sampling Table 4 gives abla-
tion studies on the results of different hyper-parameters re-
garding sampling. Most settings regarding flexible sam-
pling cause only minor influences except Tthres. A proper
scale of the flexible space is the most powerful.

Flux-Multi training. We compare our proposed method of
co-training with three input numbers(2048, 1024, 512) in
both pretraining and tuning in Table 5 and also validate the
tuning effects on well-pretrained InternVideo2-S in table
1(3072, 2048, 1024). As shown, pre-training with multiple
token numbers can not only boost performance under stan-
dard settings but also increase model consistency in input
token sparsity. Tuning with different token numbers with
a smoothed-L1-loss based self-distillation mechanism can
further enhance such alignment consistently.

4.2. Single Modality Results
We scale up the training data using the K-MASH[77]
dataset of 1.1 million samples, aligning with the data em-
ployed in the Internvideo2-Distilled series models, includ-
ing K710, SSv2[23], ANet[28], HACS[89], and MiT[56].
We train the FluxViT model using a total batch size of 2048
for 100 epochs. FluxViT’s performance is validated using
scene-based K400, motion-intensive SSv2, and long-term
COIN with Token Optimization.

K400. Table 6 reports our results compared with the pre-
vious solutions on K400. We set 3072, 2048, and 1024

Model e2e BackBone Top-1
Distant Supervision [47] ✗ TimeSformer 90.0
ViS4mer [32] ✗ Swin-B 88.4
Turbof32 [25] ✓ VideoMAE-B 87.5
VideoMambaf64 [43] ✓ VideoMamba-S 88.7
VideoMambaf64 [43] ✓ VideoMamba-M 90.4
InternVideo2f12 [77] ✓ InternVideo2-S 90.0
MA-LMM [26] ✓ MLLM 93.2
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FluxViT3072 ✓ FluxViT-S 91.8 92.1
FluxViT2048 ✓ FluxViT-S 91.5 91.9
FluxViT1024 ✓ FluxViT-S 89.8 91.0
FluxViT3072 ✓ FluxViT-B 93.9 94.1
FluxViT2048 ✓ FluxViT-B 93.7 93.9
FluxViT1024 ✓ FluxViT-B 92.5 93.2

Table 8. Comparison with the state-of-the-art on long-form
video classification COIN dataset. We report the results based
on our preset token number, with the left line using unmasked 12,
8, 4 frames, and 224 spatial resolution while the blue values show
results that can be achieved using more informative tokens.

as our token numbers in Flux-Multi-Tuning. For our
FluxViT-S, we report 88.0%(+2.2%) on K400 compared
with InternVideo2-S, which is the previous SOTA solution,
while still achieving 84.7% with nearly the same com-
putation as the lightweight network UniFormer [40] but
with competitive accuracy. For fair comparison without
K-MASH, we pretrain FluxViT using only K400 in Flux-
UMT, which also shows much better results.

SSv2. Table 7 shows our model’s performance in deal-
ing with motion-intensive video understanding tasks. Our
FluxViT-S and FluxViT-B models set new state-of-the-art
performance on SSv2 with either standard or limited com-
putation cost. For FluxViT-B, we achieve 75.6% with stan-
dard computation while still achieving 75.1% with only
25% cost of the standard setting. Previous work [88] in-
stead gets a huge performance drop using 2 frames, which
corresponds to the least computation listed.

COIN. Table 8 shows our model’s performance in dealing
with long-form video understanding tasks. Our FluxViT-S
and FluxViT-B models set new state-of-the-art performance
on COIN with either standard or limited computation cost.

4.3. Multi Modality Retrieval Results
We use the pre-trained FluxViT with the CLIP [60] frame-
work and our Flux method to train a video clip model us-
ing 27M corpus, far lower than most baseline models, in-
cluding 25M coarse level caption data: Webvid10M [3],
CC3M [62], COCO [46], VG [35], SBU [57], CC12M [11]
and 2M high-quality data: S-MiT [55], InternVid-2M-
Recap [76]. We leverage MobileClip-B [67] as the text en-
coder and only use the vanilla VTC loss, which is short for
Video-Text Contrastive loss in training. We only unfreeze
the ViT projector for the first stage using the 25M coarse

Video classification task: COIN.

Motion-intensive task: SSv2.

Model MSR DDM ANet LSMDC MSVD
Internvideo2-S2048 [77] 35.6 33.7 34.5 14.7 41.8
Frozen-B [3] 18.7 20.2 - - -
VIOLET-B [22] 25.9 23.5 - - -
Singularity-B [37] 34.0 37.1 30.6 - -
OmniVL-B [69] 34.6 33.3 - - -
CLIP4Clip-B [53] 30.6 - - 13.6 36.2
UMT-B [42] 35.2 41.2 35.5 19.1 42.3
Internvideo2-B2048 [77] 40.3 40.3 41.5 18.7 49.1
VINDLU-L [14] 32.0 36.9 30.9 - -
InternVideo-L [75] 40.7 31.5 30.7 17.6 43.4
UMT-L [42] 40.7 48.6 41.9 24.9 49.0
ViClip-L [76] 42.4 18.4 15.1 20.1 49.1
InternVideo2-L [77] 42.1 42.8 43.6 21.4 -
LanguageBind-L [91] 42.8 39.7 38.4 - 54.1
LanguageBind-H [91] 44.8 39.9 41.0 - 53.9
VideoCoCa-G [83] 34.3 - 34.5 - -
VideoPrism-G [83] 39.7 - 52.7 - -
VAST-G [13] 49.3 55.5 - - -

44.4 48.3 52.4 20.8 49.4FluxViT-S2048 45.0 49.3 52.4 22.4 49.7
42.2 45.4 47.2 18.7 48.1FluxViT-S1024 44.5 49.0 50.3 20.5 48.5
36.8 38.5 38.2 17.7 45.5FluxViT-S512 40.5 45.8 44.7 19.0 46.9
49.8 52.2 56.6 23.7 53.8FluxViT-B2048 49.9 53.5 56.7 25.4 54.2
48.0 48.8 51.8 22.6 52.8FluxViT-B1024 49.1 53.0 54.8 24.1 53.4
42.6 42.9 42.8 20.1 50.7FluxViT-B512 47.2 49.8 50.3 22.8 52.1

Table 9. Zero-shot text-to-video retrieval on MSRVTT
(“MSR”), DiDeMo (“DDM”), AcitivityNet (“ANet”), LSMDC,
and MSVD. We only report the R@1 accuracy. The upper line re-
garding FluxViT shows results with non-masked 8×2242, 4×2242

and 2×2242 input setting as indicated by the token count while
each lower bold line shows results further using more informative
tokens. We employ Dual Softmax Loss for the results.

caption data for 3 epochs. Then we unfreeze all the mod-
ules for the second stage using the 2M high-quality data for
one epoch to fully boost the ViT’s capacity. By default, we
train the clip model with a batch size of 4096. Also, we
train the clip model with three input token numbers, 2048,
1024, and 512, and utilize smoothed-L1-loss on the final
aggregated vision features to perform self-distillation and
compute contrastive loss for each vision feature of the three
numbers. Table 9 indicates that the clip model trained with
our FluxViT method outperforms the Internvideo2-Series
model with a large margin and further surpasses most of the
top-performing models in Large or even Giant scale. Re-
sults on zero-shot action recognition results are included in
Appendix for full validation of FluxViT-CLIP.

Encoder #Tokens w/ TO MVbench Dream1k-F1
Clip-L [60] 8×256 ✗ 45.6 28.4
SigLIP336-L [86] 8×576 ✗ 46.7 29.2
InternVideo2-L [77] 8×224 ✗ 47.0 28.7
SigLIP336-L [86] 4×576 ✗ 44.5 25.4
UMT-L [42] 4×256 ✗ 45.0 24.6

8×256 48.3 29.0
4×256 46.9 27.9FluxViT-L
2×256

✗
46.0 25.6

2048 49.0 (↑0.7) 29.5 (↑0.5)
1024 47.7 (↑0.8) 28.5 (↑0.6)FluxViT-L
512

✓
47.6 (↑1.6) 27.5 (↑1.9)

Table 10. Results on Chat-Centric benchmarks MVbench
(General perception) and Dream1k(Fine-grained caption).
Models are trained in a multimodal ‘linear prob’ setting where
both the Encoder and the LLM are frozen. #Tokens for the number
of visual tokens by the vision encoder.

4.4. Chat-Centric Evaluation Results
We scale the pre-trained model size to FluxViT-Large and
evaluate its performance under the VideoChat framework.
We employ a single-layer MLP projector between ViT and
an LLM(Qwen2-7B[73]) and train only the projector to
ensure an unbiased evaluation of the ViT’s performance,
termed ‘linear probe’ setting in multimodal scenarios. Such
a probing strategy is widely used in the Stage-1 training of
multi-modal chat models. We utilize a large-scaled train-
set including LLava-558K[49], S-MiT, 700k filtered sub-
set of WebVid-10M, VidLN[68], and SSv2-open-ended.
We then compare the models’ performance on two bench-
marks: MVbench, which assesses general spatiotemporal
perception capabilities, and Dream1k, which evaluates the
model’s fine-grained ability to generate detailed captions.
The other models tested include CLIP-L, SigLIP-L, and
UMT-L, which are widely used in Video MLLMs. Given
that ViT and LLM remain frozen, we maintain the original
input settings as their pretraining phases to ensure compara-
bility. We will scale the corpus size and fully tune the chat
model for full performance in future work.

5. Conclusion and Future work
We present a token optimization process to maximize infor-
mation in limited tokens within any budget. It integrates
seamlessly with mainstream frameworks, offering a sim-
ple and scalable method to enhance real-world applications
and facilitate future video foundation models. Future work
could explore more advanced token selection methods for
improvement, as the group setting can ensure full video cov-
erage but not fully resist consistent camera motions. We
test advanced Vid-TLDR [15] in Appendix, but with in-
creased cost, tedious hyper-parameter tuning, and unstable
improvement. For all current tasks tested, including fine-
grained captioning, our method is still simple and effective.

Model MSR DDM ANet LSMDC MSVD
Internvideo2-S2048 [77] 35.6 33.7 34.5 14.7 41.8
Frozen-B [3] 18.7 20.2 - - -
VIOLET-B [22] 25.9 23.5 - - -
Singularity-B [37] 34.0 37.1 30.6 - -
OmniVL-B [69] 34.6 33.3 - - -
CLIP4Clip-B [53] 30.6 - - 13.6 36.2
UMT-B [42] 35.2 41.2 35.5 19.1 42.3
Internvideo2-B2048 [77] 40.3 40.3 41.5 18.7 49.1
VINDLU-L [14] 32.0 36.9 30.9 - -
InternVideo-L [75] 40.7 31.5 30.7 17.6 43.4
UMT-L [42] 40.7 48.6 41.9 24.9 49.0
ViClip-L [76] 42.4 18.4 15.1 20.1 49.1
InternVideo2-L [77] 42.1 42.8 43.6 21.4 -
LanguageBind-L [91] 42.8 39.7 38.4 - 54.1
LanguageBind-H [91] 44.8 39.9 41.0 - 53.9
VideoCoCa-G [83] 34.3 - 34.5 - -
VideoPrism-G [83] 39.7 - 52.7 - -
VAST-G [13] 49.3 55.5 - - -

44.4 48.3 52.4 20.8 49.4FluxViT-S2048 45.0 49.3 52.4 22.4 49.7
42.2 45.4 47.2 18.7 48.1FluxViT-S1024 44.5 49.0 50.3 20.5 48.5
36.8 38.5 38.2 17.7 45.5FluxViT-S512 40.5 45.8 44.7 19.0 46.9
49.8 52.2 56.6 23.7 53.8FluxViT-B2048 49.9 53.5 56.7 25.4 54.2
48.0 48.8 51.8 22.6 52.8FluxViT-B1024 49.1 53.0 54.8 24.1 53.4
42.6 42.9 42.8 20.1 50.7FluxViT-B512 47.2 49.8 50.3 22.8 52.1

Table 9. Zero-shot text-to-video retrieval on MSRVTT
(“MSR”), DiDeMo (“DDM”), AcitivityNet (“ANet”), LSMDC,
and MSVD. We only report the R@1 accuracy. The upper line re-
garding FluxViT shows results with non-masked 8×2242, 4×2242

and 2×2242 input setting as indicated by the token count while
each lower bold line shows results further using more informative
tokens. We employ Dual Softmax Loss for the results.
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one epoch to fully boost the ViT’s capacity. By default, we
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numbers. Table 9 indicates that the clip model trained with
our FluxViT method outperforms the Internvideo2-Series
model with a large margin and further surpasses most of the
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Appendix for full validation of FluxViT-CLIP.
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✗
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We employ a single-layer MLP projector between ViT and
an LLM(Qwen2-7B[73]) and train only the projector to
ensure an unbiased evaluation of the ViT’s performance,
termed ‘linear probe’ setting in multimodal scenarios. Such
a probing strategy is widely used in the Stage-1 training of
multi-modal chat models. We utilize a large-scaled train-
set including LLava-558K[49], S-MiT, 700k filtered sub-
set of WebVid-10M, VidLN[68], and SSv2-open-ended.
We then compare the models’ performance on two bench-
marks: MVbench, which assesses general spatiotemporal
perception capabilities, and Dream1k, which evaluates the
model’s fine-grained ability to generate detailed captions.
The other models tested include CLIP-L, SigLIP-L, and
UMT-L, which are widely used in Video MLLMs. Given
that ViT and LLM remain frozen, we maintain the original
input settings as their pretraining phases to ensure compara-
bility. We will scale the corpus size and fully tune the chat
model for full performance in future work.

5. Conclusion and Future work
We present a token optimization process to maximize infor-
mation in limited tokens within any budget. It integrates
seamlessly with mainstream frameworks, offering a sim-
ple and scalable method to enhance real-world applications
and facilitate future video foundation models. Future work
could explore more advanced token selection methods for
improvement, as the group setting can ensure full video cov-
erage but not fully resist consistent camera motions. We
test advanced Vid-TLDR [15] in Appendix, but with in-
creased cost, tedious hyper-parameter tuning, and unstable
improvement. For all current tasks tested, including fine-
grained captioning, our method is still simple and effective.

Zero-shot text-to-video retrieval.�

MLLM benchmarks.

t_token = [2048]
s_tokens = [1024, 1536, 2048]
resolution = random.choice([
  112, 168, 196, 224, 256, ...
])
frame = random.choice([
  4, 6, 8, 10, 12, 14, 16, ...
])
mask_ratio = calculate(
    token, resolution, frame
)
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· Train Once, Deploy Anywhere: Optimize your input first at deployment! Flexible training 
sampling empowers a single video model to adapt seamlessly across diverse computational 
budgets and downstream scenarios via efficient Token Optimization.
· New Augmentation for Teacher–Student Pretraining: Flexible teacher sampling enriches 
feature diversity and training efficiency at no extra cost, boosting downstream generalization.
· Open-Source and Efficient: FluxViT achieves SOTA performance across a wide range of 
video understanding tasks with dramatically reduced computational demand.

Ablation Study.


