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)’ Background

Whole Slide Image

® WSI is a visual digital image produced by scanning and
splicing traditional pathology slides with a digital scanner at
high resolution.

® WSI scans tissue sections at high resolution, capturing minute
details and providing reliable diagnostic evidence.

Characteristics of Pathological Images

® High-resolution WSI has a huge image size, which makes
traditional convolutional computing "overwhelmed".
® Obtaining massive amounts of WSI annotated by

L. i

";'au'-‘.a

.. 89,000 x 79,000 px
pathologists is costly and time-consuming. S

® Differences in lighting and equipment cause multi-center e
effects, affecting model performance and generalization
capabilities.

® The collection, transmission, calculation and storage of WSI
data must ensure the confidentiality of patient information.




)) Background

Differences between pathological images and natural images:

Directional diversity: Unlike the relatively fixed orientations in natural images, pathological images are
"reasonable 1n all directions."

Color consistency: Compared with diverse natural images, the color distribution in pathological images is
relatively consistent.

Cross-scale field of view: Pathological images can dynamically adjust the field of view to obtain cross-
scale tissue and cell information.
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)’ Research Motivation

e Existing Methods: ®Multiple Instance
Methods; @Message Passing GCN Model;
®Supervised Deep Learning Methods

e Problems: ®Image global information loss;
@Feature distribution shift and category
distribution shift; ®Insufficient generalization

ability.

For the first time, we try a dual-branch graph
method + category and feature alignment, and
propose an unsupervised graph domain adaptive
WSI survival prediction method.
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Figure 1. Examples of pathology images with distributional
shifts. The left side shows images from two WSI datasets. The
right side shows a t-SNE visualization of the class distribution
and features extracted using the CLAM method.



PP Research Methods
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Figure 2. Overview of our proposed DETA architecture. The dual-branch graph encoder utilizes the MP branch and the
SP branch to extract semantic information explicitly and implicitly. To implement GDA, we propose a two-stage
alignment strategy to train the graph encoder and risk predictor using labeled WSI graphs from the source domain and
unlabeled WSI graphs from the target domain.
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)’ Research Methods

® Dual-branch Graph Encoder

® [ocal information is provided by the message

paSSing GCN model Information Aggregation
Rt — UPD (hgf),AGG ({hif) ru € N(’b‘)}))
Neighboring nodes
Feature Updates

® Global information is provided by the shortest

Position encoding

path GCN model: / information
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Figure 3. Overview of the proposed branch coupling. We
adversarially optimize perturbations to align domain distributions
and employ an alternating strategy to align class distributions.
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® Decoupling dual branches to achieve category alignment

e Obtaining high-confidence pseudo labels by alternating branch decoupling strategies:
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® Adversarial perturbations for feature alignment

® [ecarning perturbations in an adversarial manner via domain classifiers:

min max Lap = Egtept log (1 - D(Htaﬁt))

1sMF||<e,||65F|<e D

+ Egseps log D(H", p")
® Model Training

The overall training goal of graph domain adaptation:

min {ﬁsum + L1+ L2+ lﬂf}x{ﬁﬂf’}}
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PP Experimental Results

Methods Year BLCA—LGG BLCA—UCEC BLCA—LUAD LGG—BLCA LGG—UCEC LGG—LUAD
AuMIL [15] 2018  0.544540.0014  0.5561+0.0033  0.5582-£0.0095 | 0.5147+0.0011  0.5159+0.0011 0.528040.0008
CLAM [24] 2021  0.542940.0076  0.562340.0019  0.5240-£0.0048  0.53214+0.0031  0.55404£0.0065  0.5127£0.0005
TransMIL [33] 2021  0.589040.0012  0.5667+0.0074  0.5100+£0.0005 | 0.5316+0.0015  0.5942:+0.0011 0.5046+0.0023
DSMIL [20] 2021  0.5816+£0.0037  0.575240.0094  0.5411+£0.0013  0.5428+£0.0021  0.5714+0.0067  0.5631+0.0018
PathOmics [Y] 2023 0.58614+0.0072  0.5758+0.0073  0.5732+£0.0030 | 0.5490+0.0021  0.5513+0.0080  0.5672+0.0010
CMTA [54] 2023 0.59004£0.0076  0.580640.0041  0.5886-£0.0028  0.569940.0014  0.565540.0024  0.5367£0.0005
RRTMIL [39] 2024  0.571440.0031  0.5738+0.0033  0.5712:£0.0048 | 0.5511+£0.0006  0.5738+0.0082  0.5719+0.0014
MoME [45] 2024 0.5974+£0.0013  0.57694+0.0018  0.5862-£0.0047  0.5794:£0.0006  0.5628+0.0065  0.58724+0.0031
WiKG [21] 2024  0.591840.0021  0.5889+0.0110  0.577240.0007 | 0.588240.0024  0.5758+0.0064  0.5593+0.0018
SurvPath [1§] 2024 0.6075+£0.0045  0.59054+0.0077  0.5799+0.0019 = 0.5772-+£0.0027  0.5794+0.0017  0.5954+40.0019
DETA (Ours) - 0.65664+0.0030  0.7026+0.0015  0.6259+0.0083 | 0.6227+0.0054  0.6528+0.0039  0.645240.0033
Methods Year UCEC—LGG UCEC—BLCA UCEC—LUAD LUAD—LGG LUAD—UCEC LUAD—BLCA
AUMIL [15] 2018  0.532740.0034  0.5238+0.0047  0.5100-£0.0032 | 0.5281+4£0.0051  0.5409+0.0120  0.522040.0008
CLAM [24] 2021 0.5178+£0.0021  0.51504+0.0045  0.5442+0.0019  0.5525:£0.0083  0.5387+£0.0065  0.5118=40.0005
TransMIL [33] 2021  0.613740.0021  0.5660+0.0016 ~ 0.5180+0.0013 | 0.5345+0.0027 0.54611+0.0014  0.5263+0.0012
DSMIL [20] 2021  0.5507£0.0043  0.552440.0036  0.5079-£0.0011 0.5553+0.0103  0.553540.0067  0.5387+0.0039
PathOmics [Y] 2023 0.564940.0069  0.5780+0.0013  0.5653-£0.0015 | 0.5406:£0.0074  0.5609+0.0023  0.5514+40.0039
CMTA [54] 2023 0.5992+0.0018  0.558940.0008  0.5655-£0.0045  0.5510-£0.0048  0.5650+0.0094  0.5827+0.0021
RRTMIL [39] 2024  0.587540.0017  0.5524+0.0008  0.574240.0018 | 0.544340.0045  0.561140.0008  0.5688+0.0026
MoME [45] 2024 0.582140.0006  0.571940.0020  0.5711-£0.0014 = 0.554040.0023  0.6026-4£0.0034  0.5769+0.0036
WIKG [21] 2024 0.516040.0028  0.540440.0025  0.5658-£0.0044 | 0.607740.0044  0.5641+£0.0113  0.565340.0005
SurvPath [1§] 2024  0.597340.0014  0.59174£0.0036  0.5769£0.0025 = 0.61231+0.0077  0.5714£0.0037  0.5625£0.0013
DETA (Ours) - 0.622740.0049  0.6245+0.0069  0.6347+0.0036 | 0.6198-40.0061 0.6426+£0.0018  0.6127+0.0108

Significantly better performance than existing survival analysis methods




PP Experimental Results

e Effectiveness of the dual-branch encoder

e Effectiveness of Adaptive Perturbations

e Effectiveness of dual-branch decoupling

e Effectiveness experiment of the proposed method:

The dual-branch encoder
outperforms existing
message-passing GCNs

Adaptive perturbation and branch
decoupling can effectively improve

the robustness of the model

Methods BLCA—LGG BLCA—UCEC BLCA—LUAD LGG—BLCA LGG—UCEC LGG—LUAD
w/o MP 0.5489 1 0.1077 0.6181 | .0854 0.5790 1 9.0469 0.5782 1 9.0445 0.6101 0427 0.5699,0.0753
w/o SP 0.54150.1151 0.6646 (. 035 0.5687 |¢.0842 0.5687 . 0.0540 0.5976 | 0.0561 0.5735,0.0717
w/o §MF 0.5368 1.1198 0.62559.0771 0.5734 4 o525 0.5584 o 0643 0.6077 | p.p451 0.5691 5.0761
w/o §5° 0.52499.1317 06134 pgo2 0.5669 |5 g500 0.5331 5 0696 0.5929 | 4.0599 0.5617 | 5.0835
wlo M P55 F 0.5201 10.1365 0.6079 1 0.0947 0.5618 p.0641 0.5490,0.0737 0.5905 1 0.0675 0.5600, 00852
w/o BC 0.5347 19.1210 0.6357 | 0.0489 0.5721 | 9.0538 0.5544 | .0683 0.6031 ;.0497 0.5684 . 0765
DETA (Ours) 0.6566 0.7026 0.6259 0.6227 0.6528 0.6452
Methods UCECSLGG _ UCECSBLCA _ UCECSLUAD | LUADSLGG  LUADSUCEC  LUADSBLCA
w/o MP 0.5598 | 0.0620 0.5563 | y.0680 0.5721 |p.0626 0.5373,0.0825 0.5966 | .0460 0.5864 . 0263
w/o SP 0.5595,0.0632 0.5491 | 0754 0.56900.0657 0.5499 4. 0699 0.59930.0433 0.5689 0.0429
wlo M P 0.5517 1 9.0710 0.3556 4. 0689 0.5718 |p.0656 0.5441 1y, o757 0.5964 | 162 0.5882.0245
wio 65 0.5488 | 0.0739 0.55360.0709 0.5711 |6.0636 0.5452 1 .0774 0.59130.0513 0.56890.0435
wlo §MP§5F 0.5412 pg15 0.5487 | .0758 0.5702 9 0645 0.5359 5.0830 0.5813 4. 0613 0.5622 4 0505
w/o BC 0.5459 1 0.0768 0.5510¢.0735 0.5683 50664 0.5397 1 5.0801 0.5826, .0600 0.5772 0.0355
DETA (Ours) 0.6227 0.6245 0.6347 0.6198 0.6426 0.6127
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