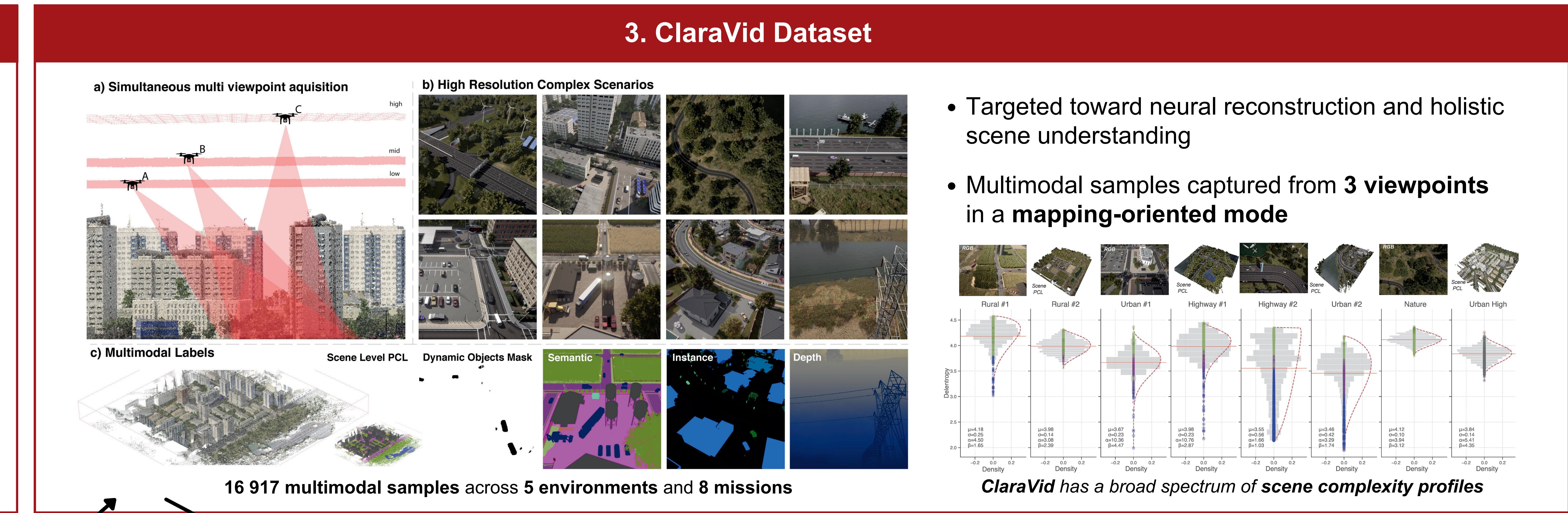


Project page

ClaraVid: A Holistic Scene Reconstruction Benchmark From Aerial Perspective With Delentropy-Based Complexity Profiling

Radu Beche

Sergiu Nedevschi


1. Introduction

Context. Neural reconstruction has advanced rapidly, yet UAV scene understanding lacks datasets unifying *semantics and geometry*. Existing resources remain *low-resolution or task-specific*, limiting holistic evaluation.

Goal. A dataset for evaluating *holistic semantic and geometric reconstruction* from UAV imagery that spans multiple *levels of visual complexity*

Contributions.

- **Delentropic Scene Profile** -- entropy-based measure of scene complexity
- **ClaraVid** -- synthetic 4K aerial benchmark with multi-view, multimodal labels
- Study showing strong correlation shown between *complexity and neural reconstruction error*

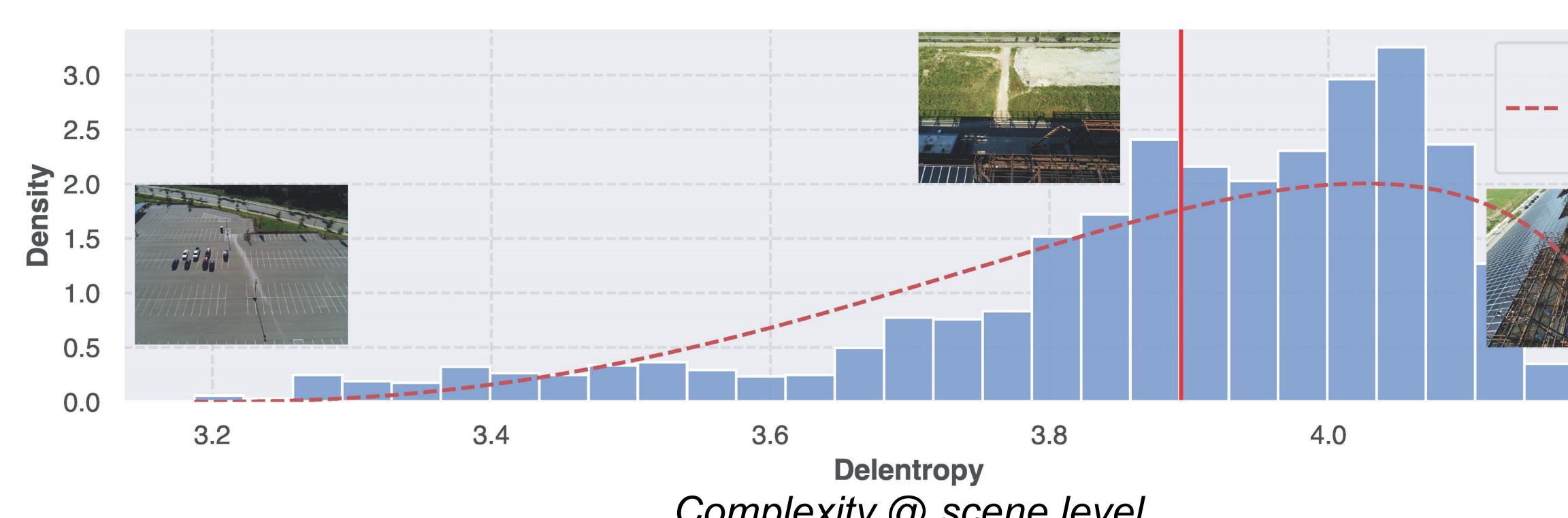
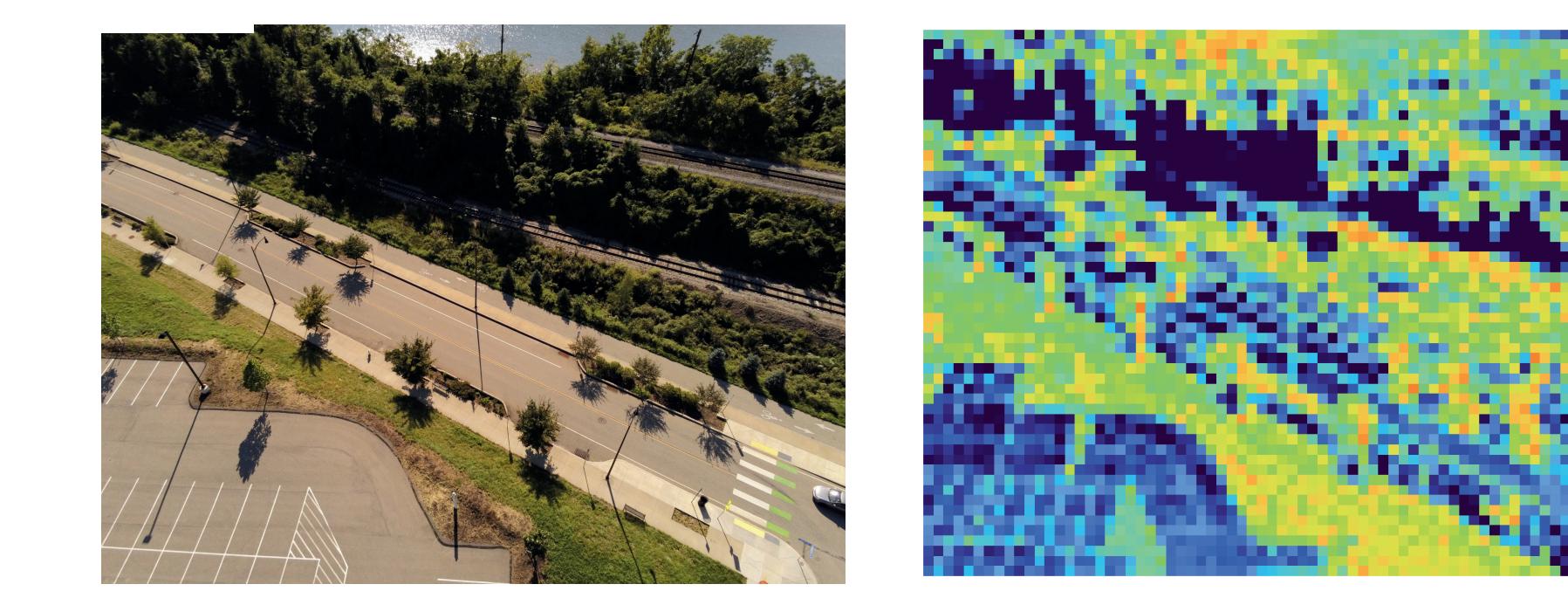
2. Scene Complexity Estimation

- In neural scene reconstruction...

scene complexity can be estimated directly from 2D imagery*

$$p_{ij} = \frac{1}{4XY} \sum_{n=-N}^{N-1} \sum_{m=-M}^{M-1} \delta_{i,f_x(m,n)} \delta_{j,f_y(m,n)}$$

$$H_{\text{del}} = -\frac{1}{2} \sum_i^I \sum_j^J p_{ij} \log_2 p_{ij}$$

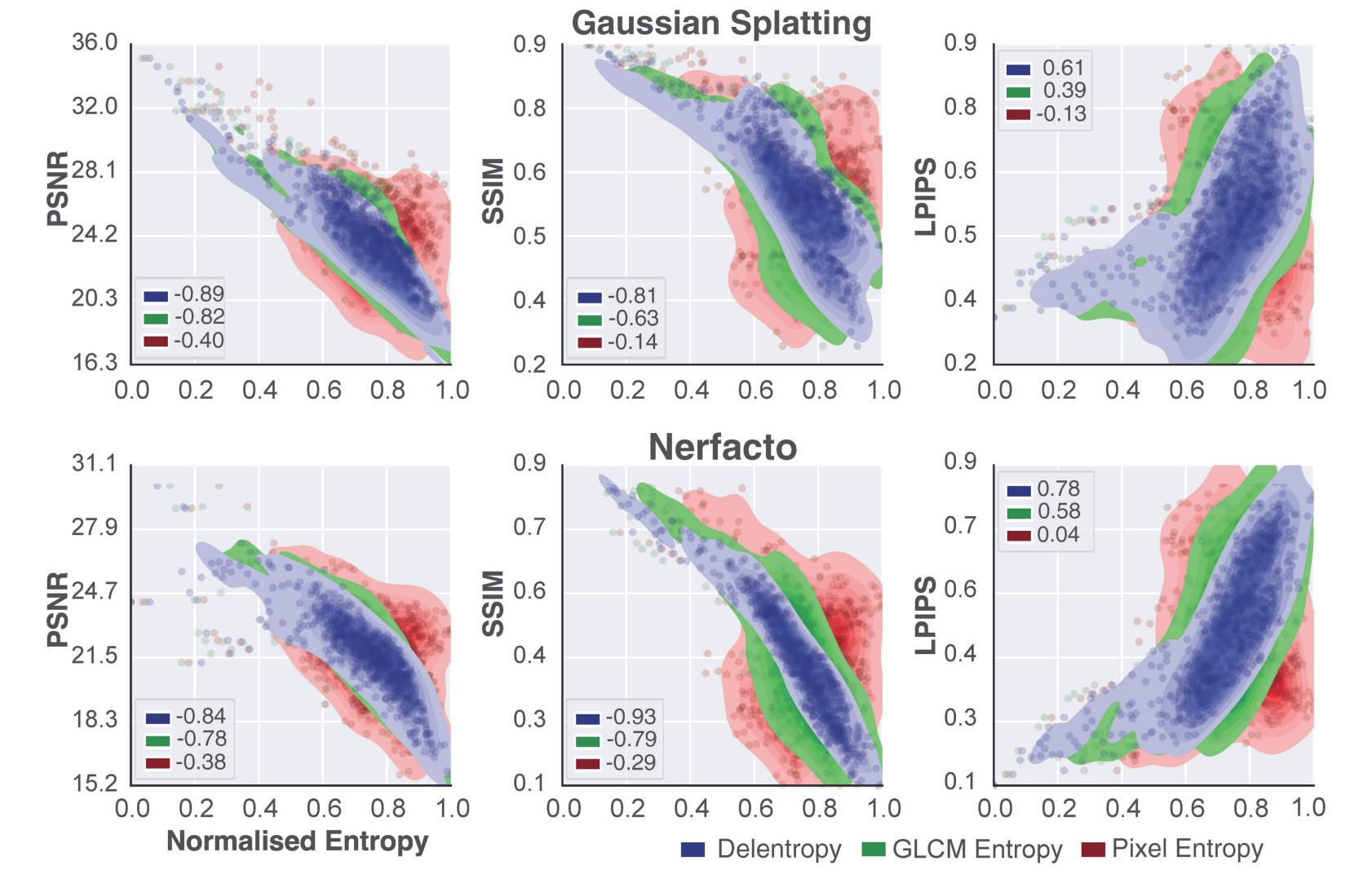


- We propose a framework for quantifying scene complexity

Delentropic Scene Profile (DSP)

$$\begin{aligned} \text{DSP}_S &= \text{Beta}(H_{\text{del}} | \alpha, \beta, a, b) \\ &= \frac{(H_{\text{del}} - a)^{\alpha-1} (b - H_{\text{del}})^{\beta-1}}{(b - a)^{\alpha+\beta-1} B(\alpha, \beta)} \end{aligned}$$

- H_{del} - image delentropy (complexity)
- α, β - skew toward easy or hard regions
- a, b - normalizing factors
- μ - average scene complexity

- A higher delentropy means a more complex image



* given a structured collection policy

4. Experimental results

Delentropic Scene Profile

- **Delentropy** correlates strongly with **reconstruction error** across NeRF and Gaussian Splatting representations
- **DSP** captures scene-level trends, serving as a **quantitative measure** for evaluating neural reconstruction

Scene	DSP			Instant-NGP [40]			TensoRF [61]			NeRF [62]			ZipNeRF [63]			Gaussian Splatting [7]		
	μ	α	β	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow	PSNR \uparrow	SSIM \uparrow	LPIPS \downarrow
Rural #1	4.18	4.50	1.65	18.27	0.3171	0.8492	18.11	0.2898	0.9204	18.36	0.2981	0.9022	18.56	0.4462	0.8818	19.97	0.5351	0.6019
Nature	4.12	3.94	3.12	21.40	0.3993	0.7057	21.02	0.3338	0.8213	21.60	0.3772	0.7705	24.55	0.5184	0.5829	22.94	0.5586	0.5515
Rural #2	3.98	3.08	2.39	20.75	0.3769	0.7192	20.61	0.3525	0.7890	21.29	0.3721	0.8145	24.54	0.5010	0.6645	22.59	0.5402	0.5727
Highway #1	3.98	10.76	2.87	20.32	0.3165	0.9148	20.41	0.3240	0.9043	20.96	0.3548	0.8862	21.73	0.4792	0.7960	22.03	0.4769	0.6814
Urban High	3.84	5.41	4.35	21.26	0.4878	0.5150	20.75	0.4465	0.5564	22.39	0.4797	0.5893	24.30	0.6920	0.4049	24.19	0.6211	0.4324
Urban #1	3.67	10.36	4.47	22.25	0.5507	0.4829	21.96	0.5230	0.5271	23.24	0.5680	0.5321	26.39	0.7451	0.3614	26.37	0.7507	0.2981
Highway #2	3.55	1.66	1.03	22.97	0.5174	0.6389	22.78	0.4944	0.6887	22.66	0.5238	0.6668	24.51	0.6964	0.4609	24.61	0.6504	0.4858
Urban #2	3.29	3.29	1.74	23.85	0.5734	0.4925	23.66	0.5511	0.5438	24.24	0.5798	0.5485	25.42	0.6945	0.3443	26.68	0.7125	0.3658
Average	3.97	5.37	2.70	21.38	0.4424	0.6648	21.16	0.4144	0.7189	21.84	0.4442	0.7138	23.75	0.5966	0.5622	23.67	0.6057	0.4987

ClaraVid

- Enables controlled evaluation across **multiple complexity levels**.
- Provides multimodal data for **semantic + geometric reconstruction evaluation** from multiple viewpoints
- For more results, please check the paper

	Nerfacto [62]			Gaussian Splatting [7]		
Train \ Pred	45° L	55° M	90° H	45° L	55° M	90° H
Appearance Synthesis						
PSNR \uparrow	21.36	20.46	19.08	22.98	21.56	20.50
55° M	20.25	21.43	20.48	20.75	22.75	21.06
90° H	18.23	19.42	22.45	17.88	19.26	23.00
SSIM \uparrow	0.42	0.40	0.36	0.58	0.50	0.42
55° M	0.39	0.42	0.40	0.45	0.58	0.41
90° H	0.34	0.40	0.47	0.36	0.65	0.59
LPIPS \downarrow	0.75	0.74	0.76	0.55	0.61	0.78
55° M	0.77	0.73	0.74	0.59	0.53	0.62
90° H	0.79	0.71	0.68	0.81	0.73	0.50
Semantic Segmentation						
mIoU \uparrow	44.82	44.14	40.78	56.53	55.11	53.50
55° M	43.12	46.57	45.74	53.34	59.59	56.50
90° H	36.95	41.64	51.08	36.68	40.82	58.54
Depth						
Abs Rel \downarrow	0.059	0.042	0.066	0.025	0.017	0.010
55° M	0.042	0.043	0.027	0.023	0.016	0.009
90° H	0.054	0.039	0.022	0.028	0.019	0.010
RMSE \downarrow	12.34	10.64	14.22	4.67	3.37	2.36
55° M	11.47	9.09	6.55	4.61	3.07	1.93
90° H	14.20	8.95	4.68	5.41	3.53	2.08
$\delta < 1.05 \uparrow$						
45° L	0.8193	0.8467	0.8317	0.881	0.92	0.95
55° M	0.8315	0.8584	0.9024	0.895	0.93	0.96
90° H	0.7886	0.8354	0.8980	0.871	0.91	0.95