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What’s object Hallucination?

2

• Model describes non-existent objects in an image

• Model misses objects that actually exist

• Results in false or misleading visual descriptions

What is a vicuna standing in the sand looking at?

A vicuna standing in the sand looking at a tree 

branch with green leaves. 
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What’s object Hallucination?
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What is a vicuna standing in the sand looking at?

A vicuna standing in the sand looking at a tree 

branch with green leaves. 

There is NO vicuna in the image .. !! 

vicuna

• Model describes non-existent objects in an image

• Model misses objects that actually exist

• Results in false or misleading visual descriptions
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Why this happen?
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• Clear visual features allow the model to focus on image evidence

Vision Encoder 

Projection layer 

Language Model

What color is the banana?

Black
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Why this happen?
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• The language prior becomes dominant over vision input

Vision Encoder 

Projection layer 

Language Model

What color is the banana?

Yellow
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Conventional Approaches

• Visual Constructive Decoding [1]

6[1] Leng, Sicong, Hang Zhang, Guanzheng Chen, Xin Li, Shijian Lu, Chunyan Miao, and Lidong Bing. "Mitigating object hallucinations in large vision-language models through visual c
ontrastive decoding." In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition , pp. 13872-13882. 2024.
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Flaws of Conventional Approaches

• Adjust LLM prior by subtracting hallucination logits

• If the prior is not properly reflected, visual cues are underutilized

• Lead to wrong answers or new hallucinations

7



S O F T  
C O M P U T I N G  
L A B O R A T O R Y

Problem Definition

• Generate hallucination-amplified logits to represent the LLM prior

• Use them to contrast and reduce hallucinated outputs
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Overview of Fuzzy Constructive Decoding
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How to get model confidence?

• Logits can serve as confidence scores for hallucination detection.

• Probability & log-probability achieve the best performance

10
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Fuzzy Rule Inference: Fuzzification

• Use log-probability as the model’s confidence score

• Sample 10% of the dataset to compute mean (x̄) and standard deviation (σ)

• Define Gaussian-based membership functions for three fuzzy sets: low, medium, high

• Enables fuzzy representation of model confidence for later rule inference
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Fuzzy Rule Inference: Rule Inference

• Combine confidence memberships from fuzzification to form fuzzy rules

• Apply Takagi–Sugeno fuzzy model to compute rule weights

• Each rule defines a combination of (low, mid, high) confidence levels
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Fuzzification 
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Fuzzy Rule Inference: Rule Inference

• 9 rules: all combinations of low / mid / high confidence

• 𝑎ℎ𝑖𝑔ℎ , 𝑎𝑚𝑒𝑑𝑖𝑢𝑚 , 𝑎𝑙𝑜𝑤 : control amplification strength

• 𝑎𝑟𝑒𝑑𝑢𝑐𝑒 : prevent over-suppression of correct tokens
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What color is this? 
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Blue:  21.20

Green: 18.12

Purple: 17.31

Blue:  23.82
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Green: 16.62

𝑙𝑜𝑔𝑖𝑡𝑠𝜃 𝑦 𝑥, 𝑣 𝑙𝑜𝑔𝑖𝑡𝑠𝜃 𝑦 𝑥, 𝑣′

𝑦𝑟𝑢𝑙𝑒𝑖 =

𝑎ℎ𝑖𝑔ℎ ∙ 𝑞 , 𝑖 ∈ {1,4}

𝑎𝑚𝑒𝑑𝑖𝑢𝑚 ∙ 𝑞, 𝑖 ∈ {2,5}
𝑎𝑟𝑒𝑑𝑢𝑐𝑒 ∙ 𝑞, 𝑖 ∈ 3
𝑎𝑙𝑜𝑤 ∙ 𝑞, 𝑖 ∈ {6,7,8,9}
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Phase II : Constructive Decoding

• Combine amplified logits from fuzzy rules using weighted averaging

• Suppress hallucinated tokens while preserving correct visual ones

• Achieves stable and balanced decoding
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POPE & ROPE
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Scalability

• Consistent accuracy improvement across all 
models

• Large gains for 7B–13B models (up to +5.4%)

• Stable improvement even in larger models 
(32B, 72B)

• Demonstrates strong scalability and 
generalizability

17
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Takeaway and Conclusions

• Fuzzy logic enables the model to detect hallucination tendencies in logits

• Dynamically adjusts contrastive decoding strength based on fuzzy rules

• Balances language priors and visual evidence for stable decoding

18
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