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Fuzzy Contrastive Decoding to Alleviate
Object Hallucination in
Large Vision-Language Model
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What’s object Hallucination?

* Model describes non-existent objects in an image
* Model misses objects that actually exist
* Results in false or misleading visual descriptions

What is a vicuna standing in the sand looking at?

o A vicuna standing in the sand looking at a tree
branch with green leaves.
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What’s object Hallucination?

* Model describes non-existent objects in an image
* Model misses objects that actually exist
* Results in false or misleading visual descriptions

What is a vicuna standing in the sand looking at?

o A vicuna standing in the sand looking at a tree
branch with green leaves.

{Ihere is NO vicuna in the image .. !!}@
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Why this happen?

 Clear visual features allow the model to focus on image evidence
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Why this happen?

* The language prior becomes dominant over vision input
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Conventional Approaches

 Visual Constructive Decoding [1]
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Flaws of Conventional Approaches

« Adjust LLM prior by subtracting hallucination logits

« If the prior is not properly reflected, visual cues are underutilized
» Lead to wrong answers or new hallucinations
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Problem Definition

« Generate hallucination-amplified logits to represent the LLM prior
« Use them to contrast and reduce hallucinated outputs
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Overview of Fuzzy Constructive Decoding
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Phase | : Fuzzy Rule Inference
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How to get model confidence?

 Logits can serve as confidence scores for hallucination detection.
« Probability & log-probability achieve the best performance
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How to get model confidence?

 Logits can serve as confidence scores for hallucination detection.
* Probability & log-probability achieve the best performance
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Fuzzy Rule Inference: Fuzzification

Use log-probability as the model’s confidence score

Sample 10% of the dataset to compute mean (X) and standard deviation (o)

Define Gaussian-based membership functions for three fuzzy sets: low, medium, high

Enables fuzzy representation of model confidence for later rule inference
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Fuzzy Rule Inference: Rule Inference

« Combine confidence memberships from fuzzification to form fuzzy rules
« Apply Takagi—Sugeno fuzzy model to compute rule weights
« Each rule defines a combination of (low, mid, high) confidence levels
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Fuzzy Rule Inference: Rule Inference

9 rules: all combinations of low / mid / high confidence
* QApigh » Amedium » Aiow - CONtrol amplification strength Q: What is this a picture of?

Phase | : Fuzzy Rule Inference
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Phase Il : Constructive Decoding

« Combine amplified logits from fuzzy rules using weighted averaging
« Suppress hallucinated tokens while preserving correct visual ones
* Achieves stable and balanced decoding
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POPE & ROPE

LLaVA-1.5 InstructBLIP
Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
default 8290 92.00 72.06 80.82 80.63 81.19 79.73 80.46

Dataset Setting Method

+ved 8773 9142 72.80 87.16 84.53 8855 79.32 83.68

+icd 83.66 80.66 80.73 88.77 8643 92.01 80.73 85.61 — - -
Random 83.52 89.25 7622 8222 8096 82.05 7226 80.63 Model Multi-Object Single-Object

+OPERA 8626 97.14 7473 8447 8656 9072 81.46 85.84 Wild Hom Het | Wild Hom  Het

+fuzzyed 88.97 93.20 84.07 B88.40 86.66 91.16 81.20 85.89

default 81.00 87.88 72.06 79.19 80.50 80.80 80.00 80.40 LLaVALS | 13.96 31.88 3.98 13.96 31.88 3.98

+ved 8538 86.92 8328 85.06 8147 82.89 7932 81.07 + ved 13.57 28.68 6.37 | 24.76 48.33 0.84
Popular +icd 80.46 76.39 88.83 82.14 8293 84.45 80.73 82.55 +icd 14.35 32.63 569 2202 4547 10.24
+vdd 85.87 94.32 7633 84.38 7890 7835 79.86 79.10 :
MSCOCO +OPERA 8526 94.64 7473 8353 8093 7546 91.66 82.78 + vdd 178 4077 740 | 2749 52.12  11.06
+fuzzyed 8610 91.81 7926 85.08 8520 8826 8120 84.58 + OPERA | 13.20 37.14 382 | 13.20 37.14 3.82
default 78.60 82.89 72.06 77.10 7740 76.11 79.87 77.94 +fllZZ}’Cd |21‘12 46.44 7.45 |29‘01 57.88 11.30
+ved 80.88 79.45 8329 8133 79.56 79.67 79.39 79.52
Adversarial ¢4 76.07 70.77 89.47 79.03 80.87 8095 80.73 80.84
+vdd 83.52 89.25 7622 8222 81.63 75.70 81.00 78.26
+OPERA 83.23 89.84 7493 81.71 7633 70.15 91.66 79.47
+fuzzyed 83.93 88.61 77.86 82.89 8190 8235 81.20 81.77
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Scalability

« Consistent accuracy improvement across all
models

 Large gains for 7B—13B models (up to +5.4%) 900 | T Base
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« Stable improvement even in larger models 87.5 -
(32B, 72B) 2

« Demonstrates strong scalability and
generalizability
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Takeaway and Conclusions

* Fuzzy logic enables the model to detect hallucination tendencies in logits
« Dynamically adjusts contrastive decoding strength based on fuzzy rules
« Balances language priors and visual evidence for stable decoding
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