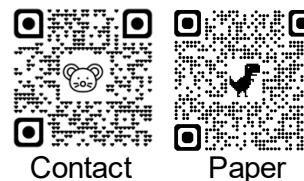


Fuzzy Contrastive Decoding to Alleviate Object Hallucination in Large Vision-Language Model

Jieun Kim, Jimyeong Kim, Yoonji Kim, Sung-Bae Cho

Yonsei University



What's object Hallucination?

- Model describes non-existent objects in an image
- Model misses objects that actually exist
- Results in false or misleading visual descriptions

What is a vicuna standing in the sand looking at?

A vicuna standing in the sand looking at a tree branch with green leaves.

What's object Hallucination?

- Model describes **non-existent objects** in an image
- Model misses objects that actually exist
- Results in false or misleading visual descriptions

What is a vicuna standing in the sand looking at?

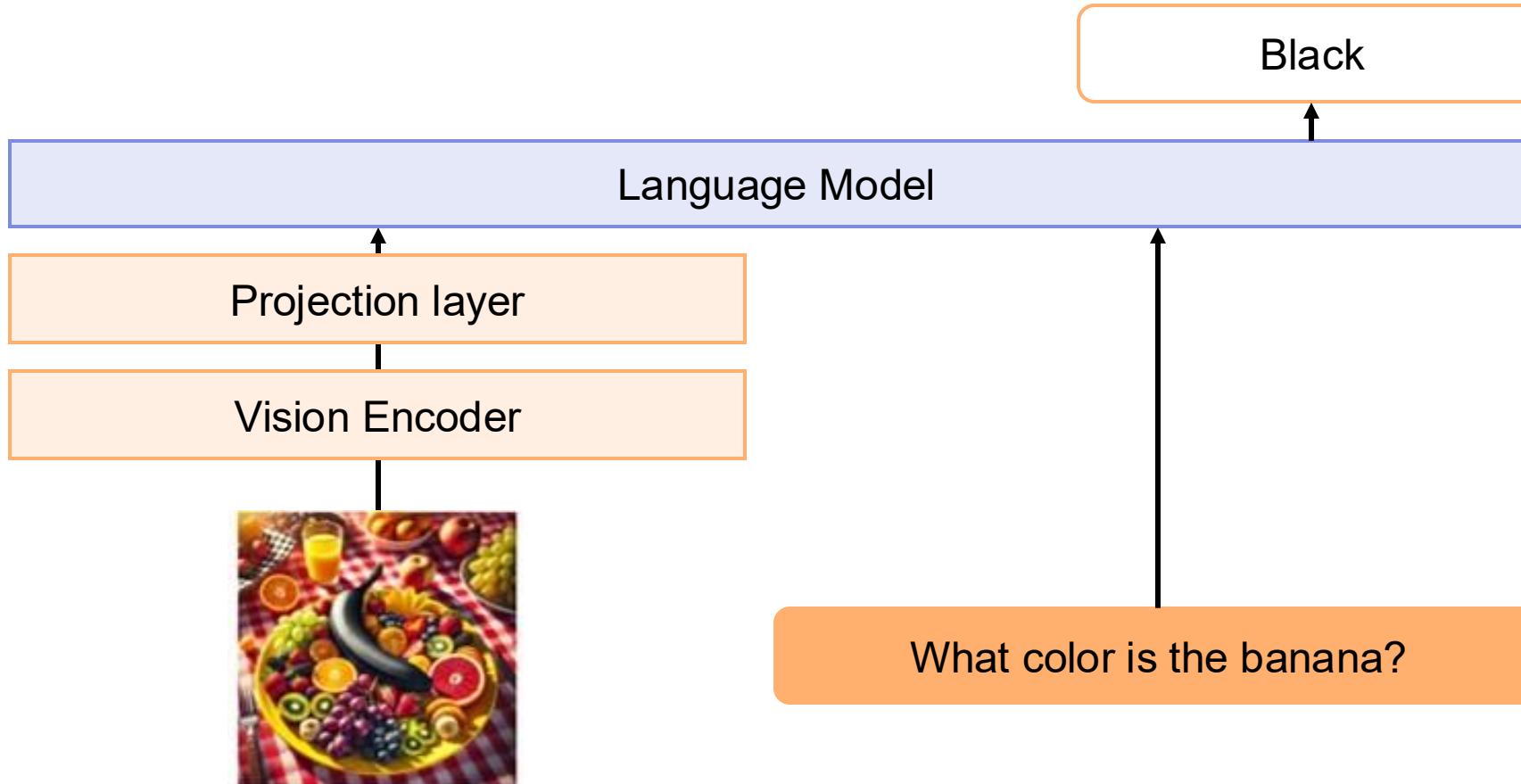
A vicuna standing in the sand looking at a tree branch with green leaves.

There is **NO** vicuna in the image .. !!

vicuna

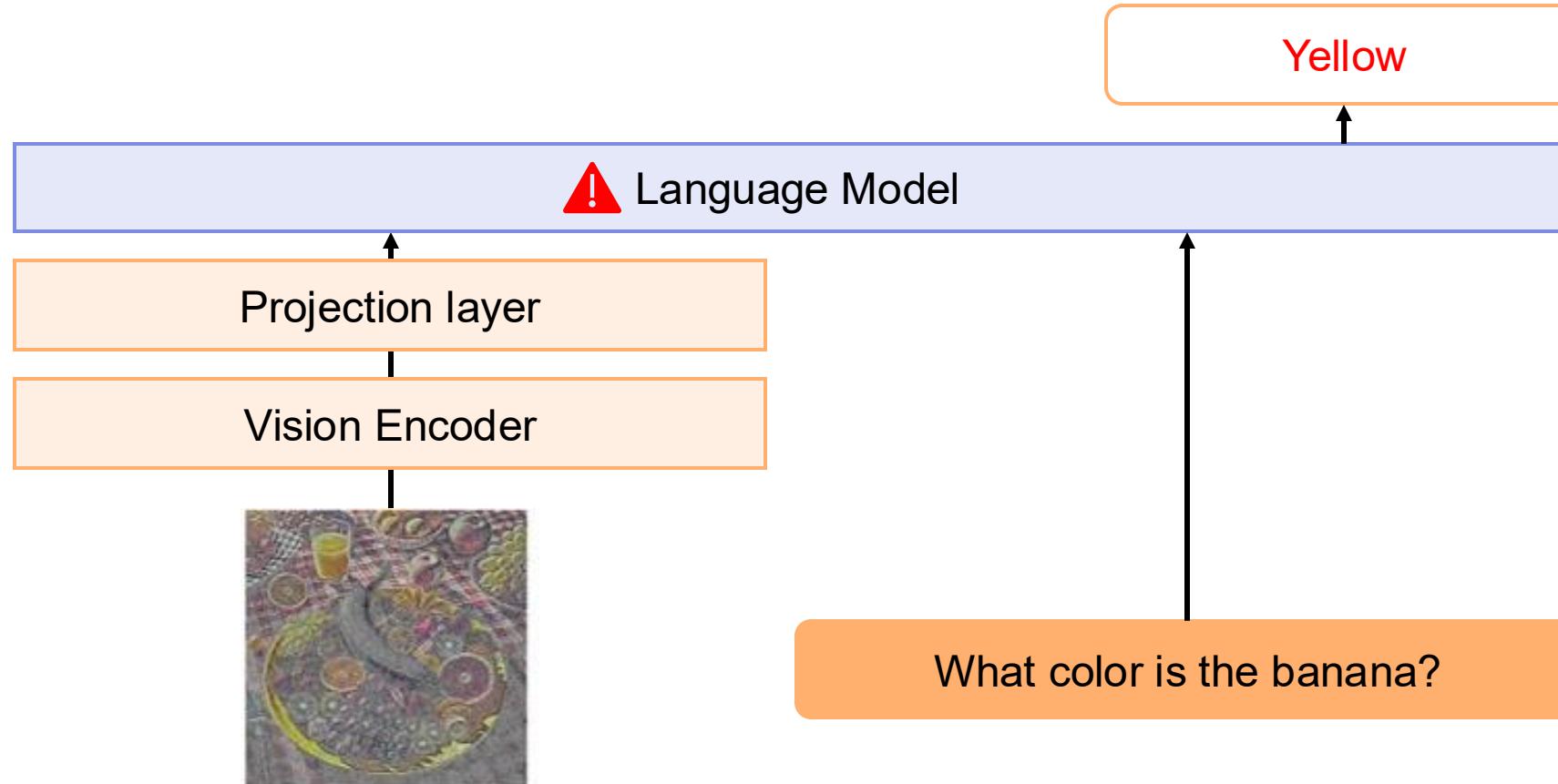
Why this happen?

- Clear visual features allow the model to focus on image evidence



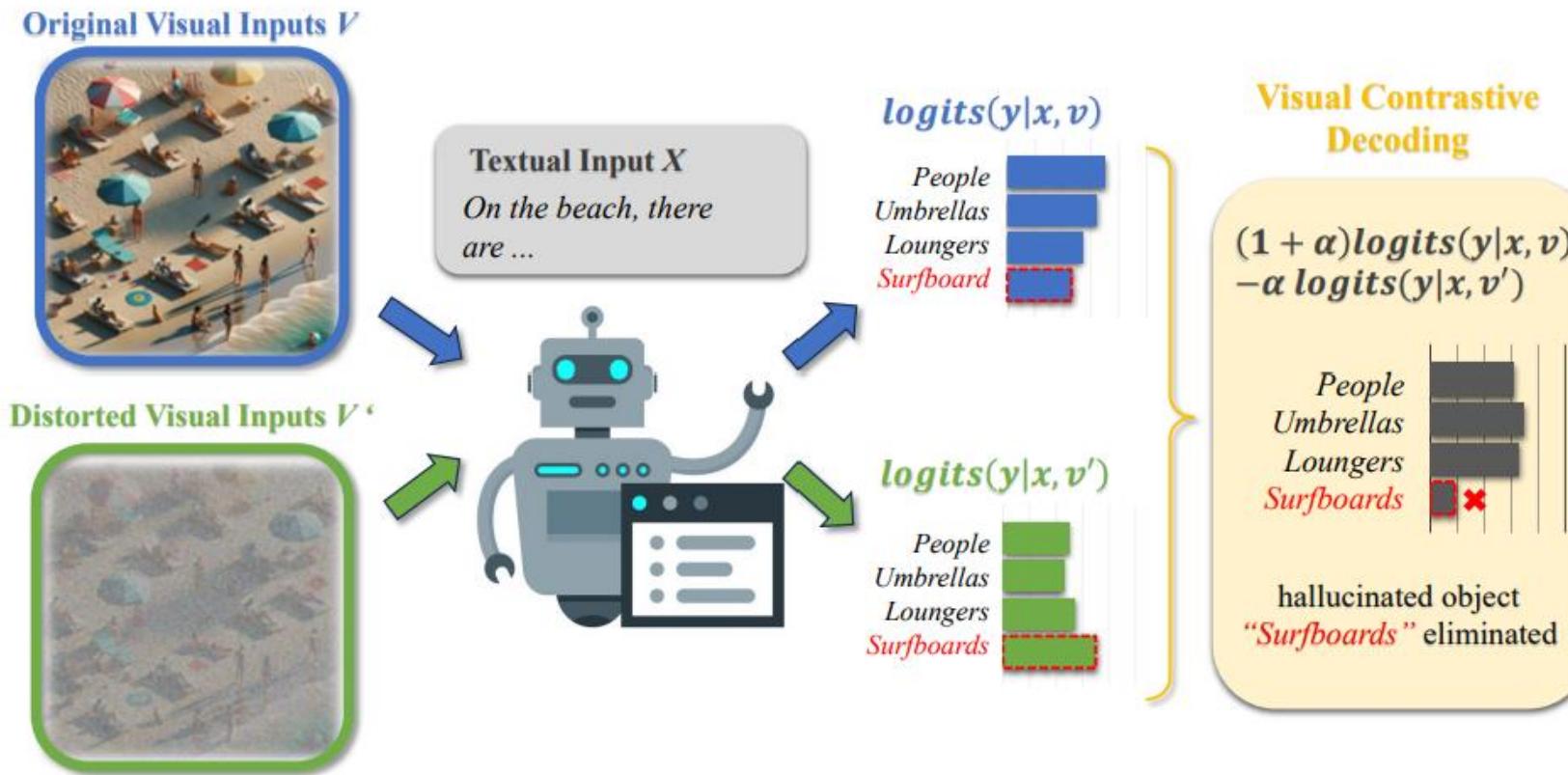
Why this happen?

- The language prior becomes dominant over vision input



Conventional Approaches

- Visual Constructive Decoding [1]

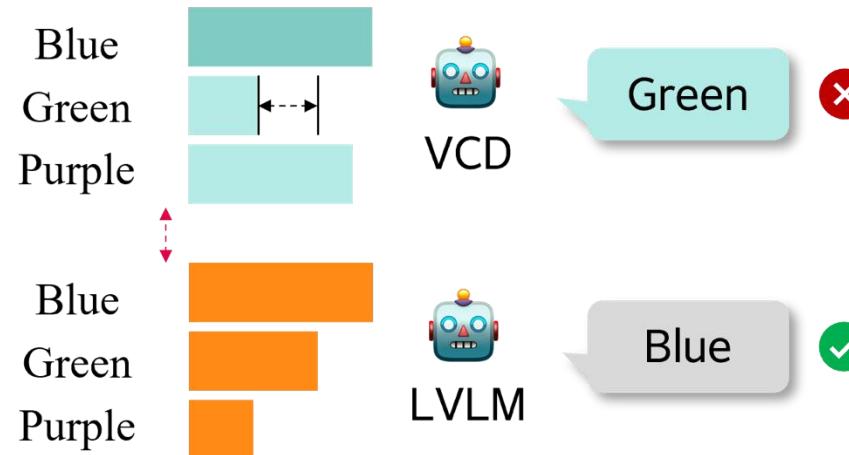


Flaws of Conventional Approaches

- Adjust LLM prior by subtracting hallucination logits
- If the prior is not properly reflected, visual cues are underutilized
- Lead to wrong answers or new hallucinations

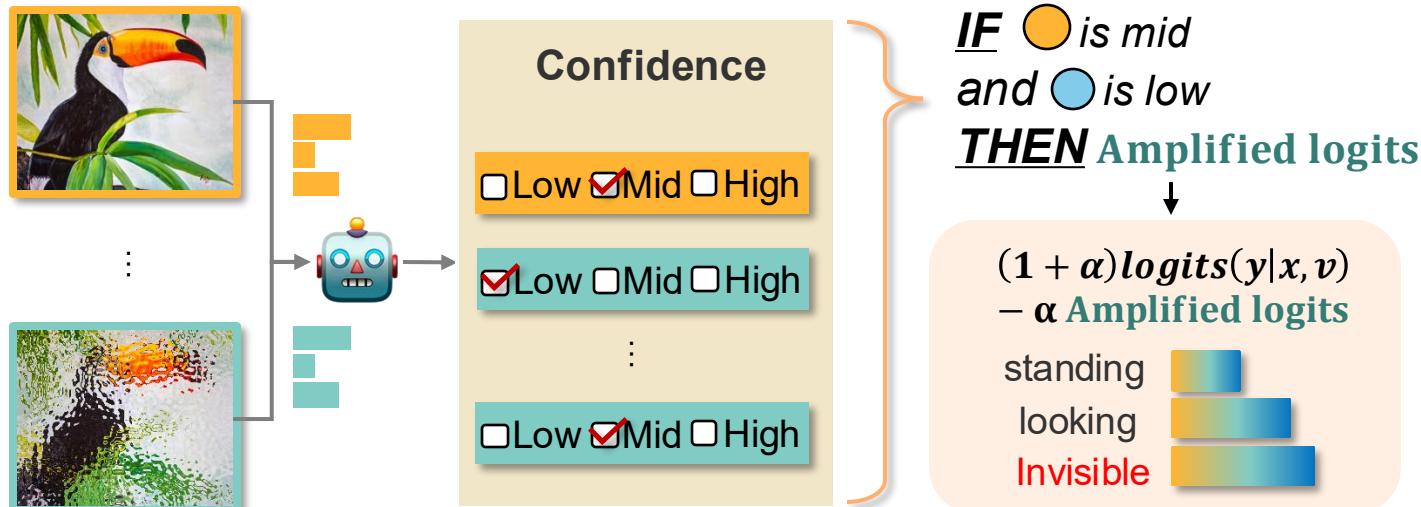
What color is this?

$$(1 + \alpha) \text{logits}_{\theta}(y|x, v) - \alpha \text{logits}_{\theta}(y|x, v)$$



Problem Definition

- Generate hallucination-amplified logits to represent the LLM prior
- Use them to contrast and reduce hallucinated outputs

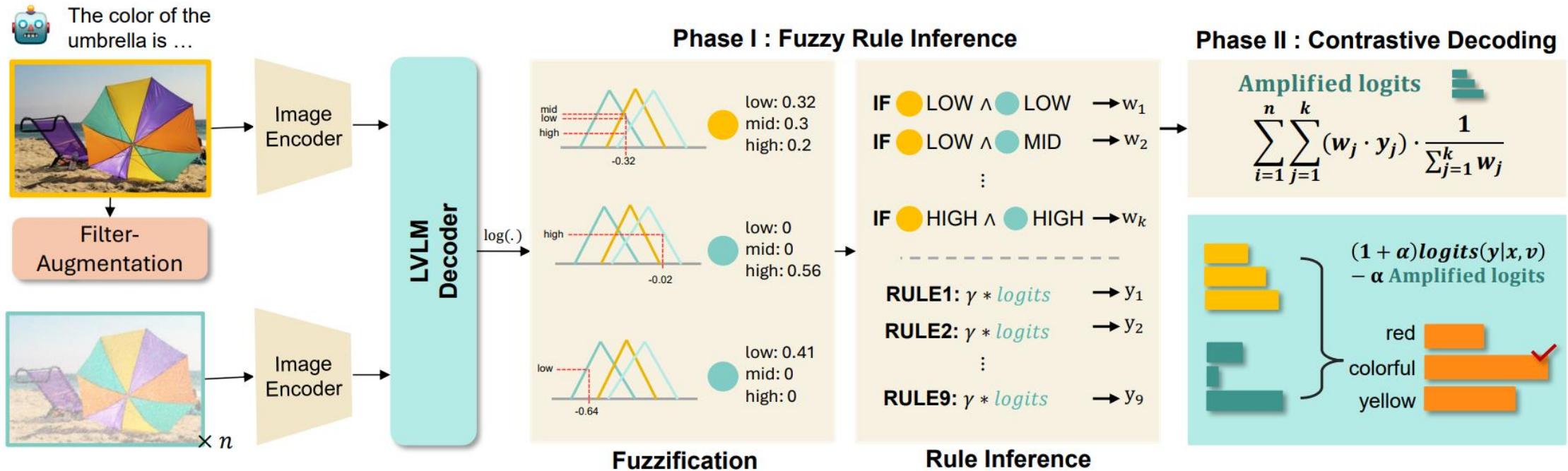


$$y_t \sim P(y_t | x, v, y_{<t})$$

$$\hat{y}_t \sim P(\hat{y}_t | \hat{x}, y_{<t})$$

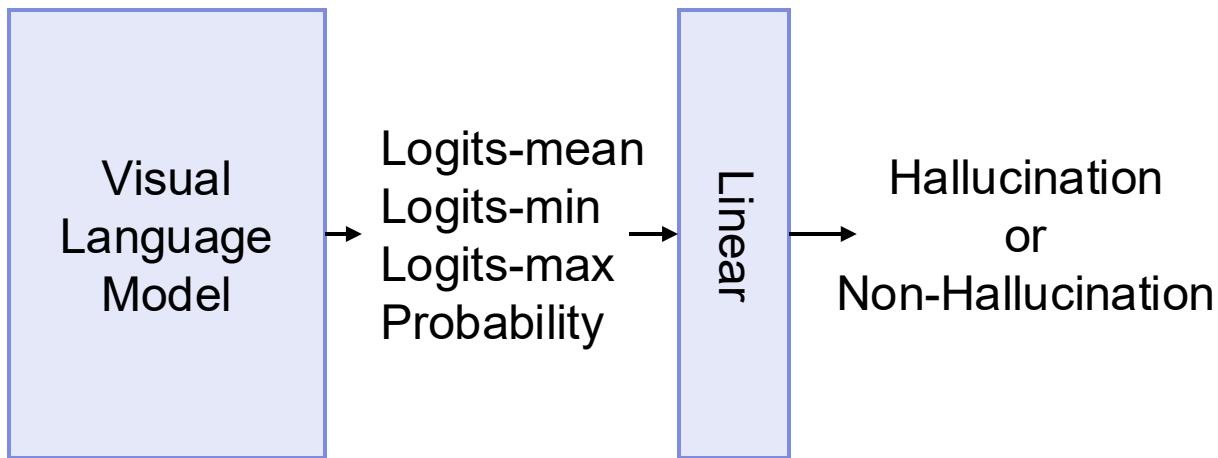
$$y_t \sim (1 + \alpha) \cdot y_t - \alpha \cdot \hat{y}_t$$

Overview of Fuzzy Constructive Decoding

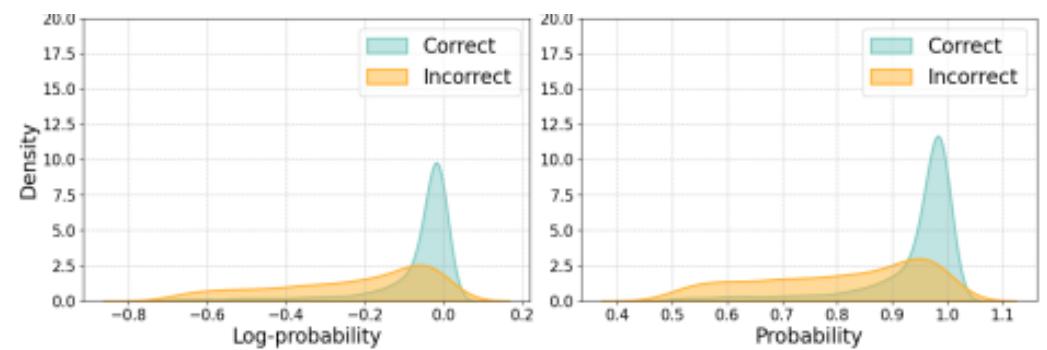


How to get model confidence?

- Logits can serve as confidence scores for hallucination detection.
- Probability & log-probability achieve the best performance

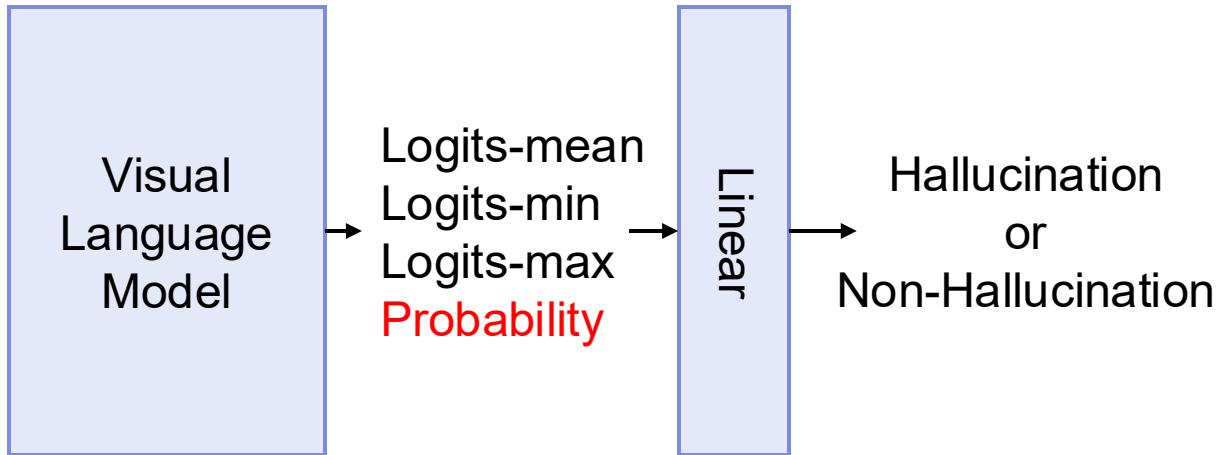


	VizWiz	POPE		
		val	random	popular
Logits-mean	0.58	0.24	0.26	0.31
Logits-min	0.56	0.25	0.27	0.31
Logits-max	0.70	0.69	0.72	0.72
Probability	0.75	0.79	0.78	0.76
Log-probability	0.75	0.79	0.78	0.76

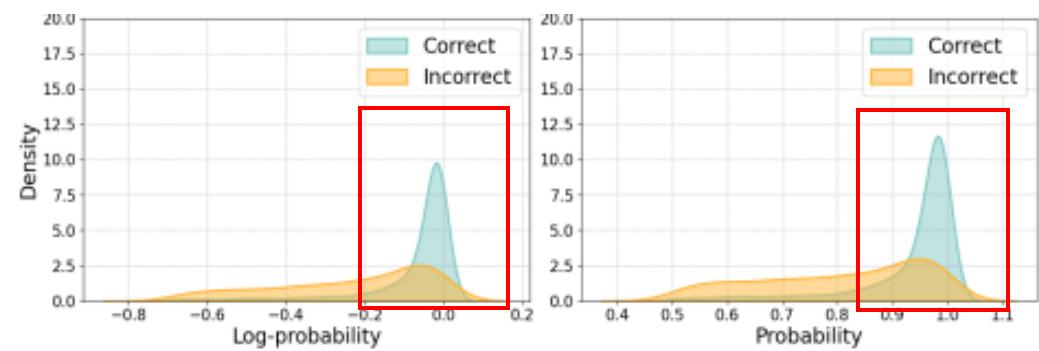


How to get model confidence?

- Logits can serve as confidence scores for hallucination detection.
- Probability & log-probability achieve the best performance



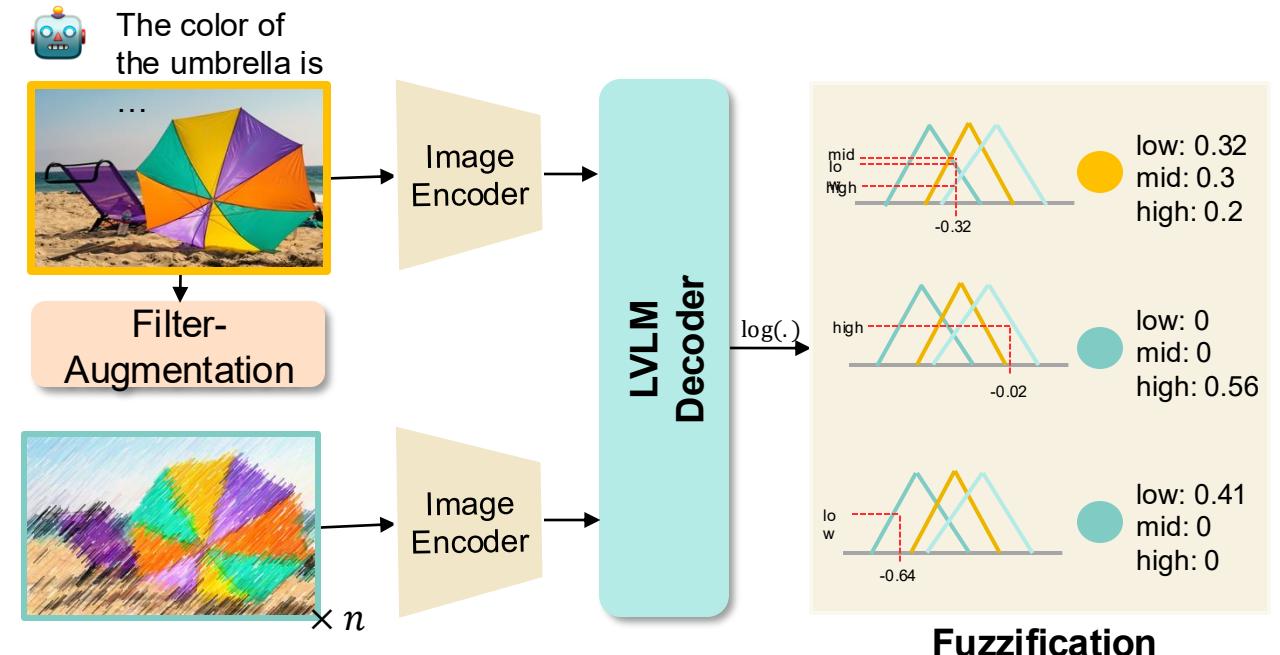
	VizWiz	POPE		
		val	random	popular
Logits-mean	0.58	0.24	0.26	0.31
Logits-min	0.56	0.25	0.27	0.31
Logits-max	0.70	0.69	0.72	0.72
Probability	0.75	0.79	0.78	0.76
Log-probability	0.75	0.79	0.78	0.76



Fuzzy Rule Inference: Fuzzification

- Use log-probability as the model's confidence score
- Sample 10% of the dataset to compute mean (\bar{x}) and standard deviation (σ)
- Define Gaussian-based membership functions for three fuzzy sets: low, medium, high
- Enables fuzzy representation of model confidence for later rule inference

$$\mu_k(x) = \exp\left(-\frac{(x - (x_{mean} + k \cdot \sigma))^2}{2\sigma^2}\right),$$
$$k \in \{-1, 0, 1\}$$



Fuzzy Rule Inference: Rule Inference

- Combine confidence memberships from fuzzification to form fuzzy rules
- Apply Takagi–Sugeno fuzzy model to compute rule weights
- Each rule defines a combination of (low, mid, high) confidence levels

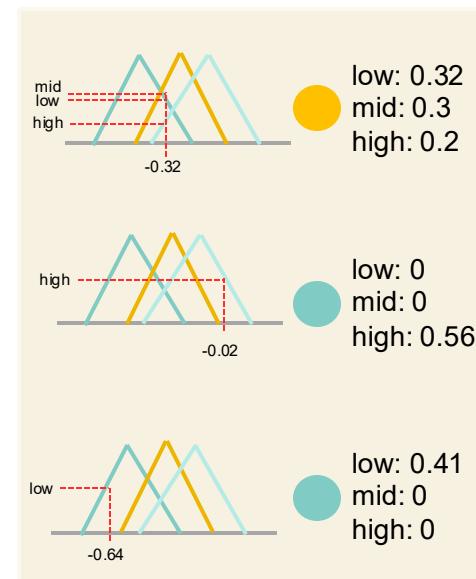
$$w_{rule_i} = \mu(x_1) \cdot \mu_k(x_2) \quad \text{for } i = 1, 2, \dots, 9$$

IF LOW \wedge LOW

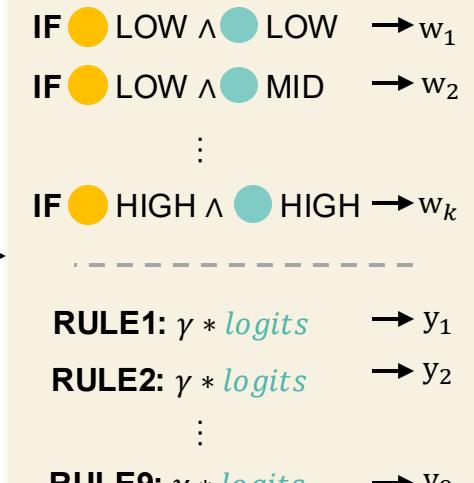
IF LOW \wedge MID

:

IF HIGH \wedge HIGH



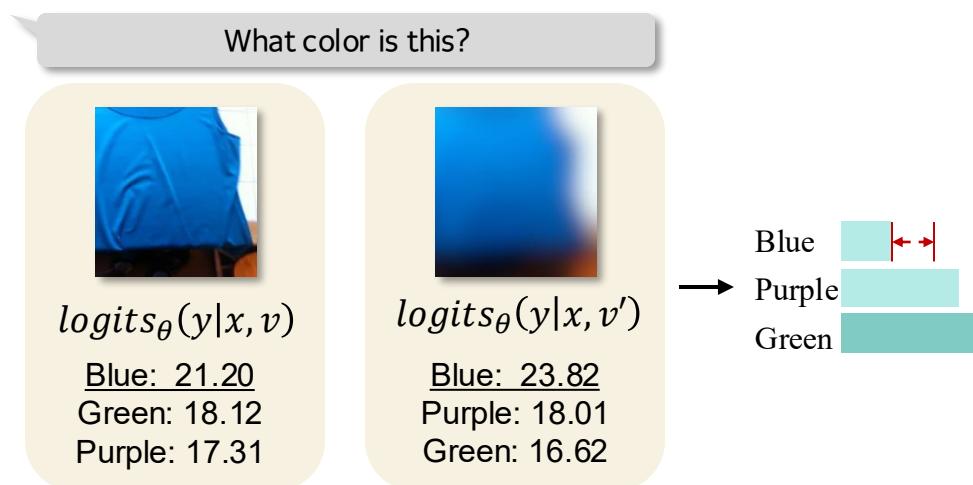
Fuzzification



Rule Inference

Fuzzy Rule Inference: Rule Inference

- 9 rules: all combinations of *low* / *mid* / *high* confidence
- a_{high} , a_{medium} , a_{low} : control amplification strength
- a_{reduce} : prevent over-suppression of correct tokens

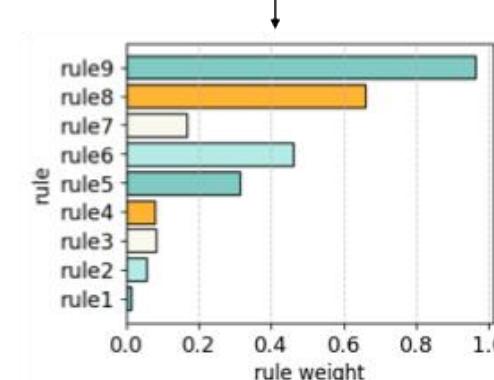


$$y_{rule_i} = \begin{cases} a_{high} \cdot q, & i \in \{1,4\} \\ a_{medium} \cdot q, & i \in \{2,5\} \\ a_{reduce} \cdot q, & i \in \{3\} \\ a_{low} \cdot q, & i \in \{6,7,8,9\} \end{cases}$$

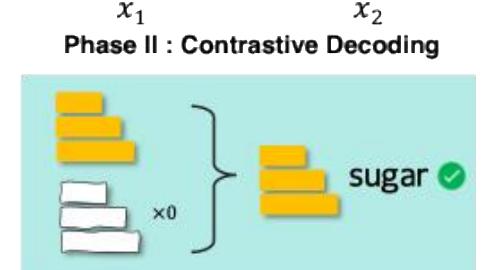
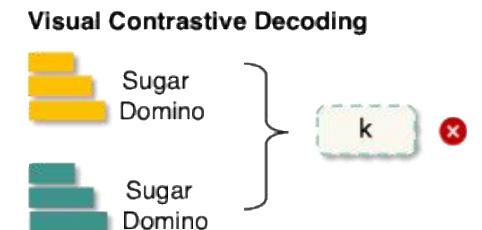
Q: What is this a picture of?

Phase I : Fuzzy Rule Inference

x_1	x_2
High: 0.99	High: 0.91
Mid: 0.67	Mid: 0.65
Low: 0.17	Low: 0.23



Rule 9:
IF x_1 is **HIGH** and x_2 is **HIGH**
THEN \neg **Amplified Logits**



Phase II : Constructive Decoding

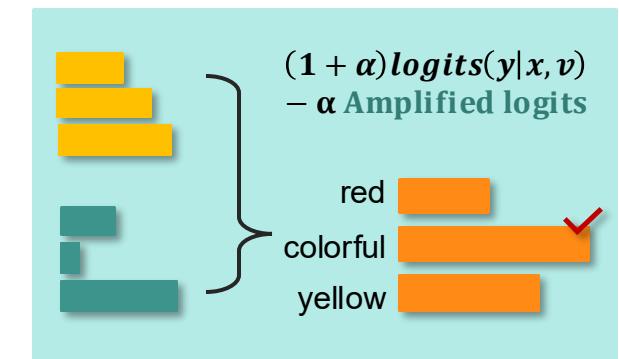
- Combine amplified logits from fuzzy rules using weighted averaging
- Suppress hallucinated tokens while preserving correct visual ones
- Achieves stable and balanced decoding

$$Y_{amplified} = \sum_{i=1}^n \sum_{j=1}^k \left(\frac{w_j \cdot y_j}{\sum_{j=1}^k w_j} \right)$$

Phase II : Contrastive Decoding

Amplified logits

$$\sum_{i=1}^n \sum_{j=1}^k (w_j \cdot y_j) \cdot \frac{1}{\sum_{j=1}^k w_j}$$



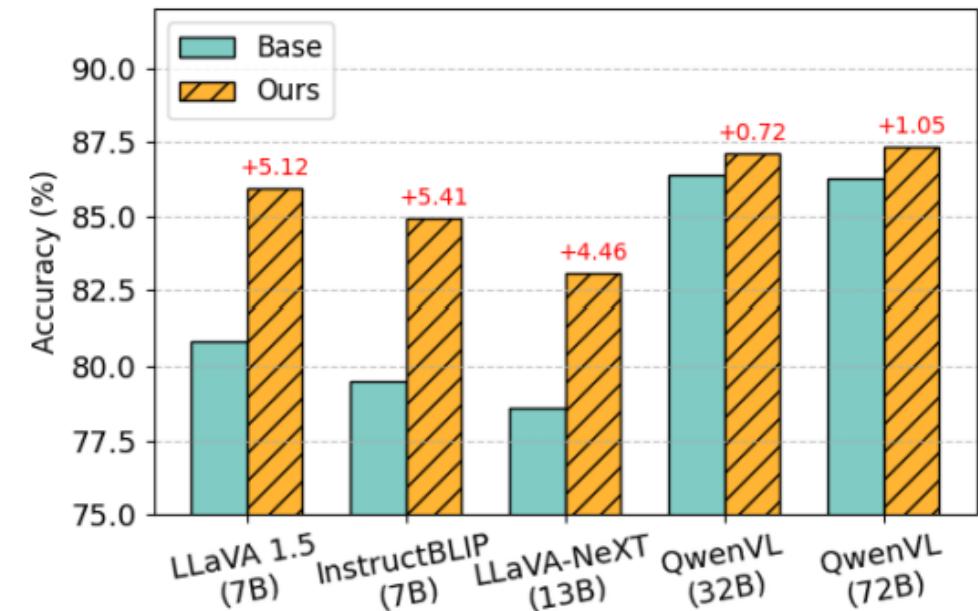
POPE & ROPE

Dataset	Setting	Method	LLaVA-1.5				InstructBLIP			
			Acc.	Prec.	Rec.	F1	Acc.	Prec.	Rec.	F1
Random	MSCOCO	<i>default</i>	82.90	92.00	72.06	80.82	80.63	81.19	79.73	80.46
		+ <i>vcd</i>	87.73	91.42	72.80	87.16	84.53	88.55	79.32	83.68
		+ <i>icd</i>	83.66	80.66	<u>80.73</u>	88.77	86.43	92.01	80.73	85.61
		+ <i>vdd</i>	83.52	89.25	76.22	82.22	80.96	82.05	72.26	80.63
		+ <i>OPERA</i>	86.26	97.14	74.73	84.47	<u>86.56</u>	90.72	81.46	<u>85.84</u>
		+ <i>fuzzycd</i>	88.97	93.20	84.07	<u>88.40</u>	86.66	91.16	<u>81.20</u>	85.89
Popular	Adversarial	<i>default</i>	81.00	87.88	72.06	79.19	80.50	80.80	80.00	80.40
		+ <i>vcd</i>	85.38	86.92	<u>83.28</u>	<u>85.06</u>	81.47	82.89	79.32	81.07
		+ <i>icd</i>	80.46	76.39	88.83	82.14	<u>82.93</u>	84.45	80.73	82.55
		+ <i>vdd</i>	<u>85.87</u>	94.32	76.33	84.38	78.90	78.35	79.86	79.10
		+ <i>OPERA</i>	85.26	94.64	74.73	83.53	80.93	75.46	91.66	<u>82.78</u>
		+ <i>fuzzycd</i>	86.10	91.81	79.26	85.08	85.20	88.26	<u>81.20</u>	84.58
Adversarial	Adversarial	<i>default</i>	78.60	82.89	72.06	77.10	77.40	76.11	79.87	77.94
		+ <i>vcd</i>	80.88	79.45	<u>83.29</u>	81.33	79.56	79.67	79.39	79.52
		+ <i>icd</i>	76.07	70.77	89.47	79.03	80.87	80.95	80.73	80.84
		+ <i>vdd</i>	<u>83.52</u>	89.25	76.22	<u>82.22</u>	<u>81.63</u>	75.70	81.00	78.26
		+ <i>OPERA</i>	83.23	89.84	74.93	81.71	76.33	70.15	91.66	79.47
		+ <i>fuzzycd</i>	83.93	88.61	77.86	82.89	81.90	82.35	<u>81.20</u>	81.77

Model	Multi-Object			Single-Object		
	Wild	Hom	Het	Wild	Hom	Het
LLaVA1.5	13.96	31.88	3.98	13.96	31.88	3.98
+ vcd	13.57	28.68	6.37	24.76	48.33	9.84
+ icd	14.35	32.63	5.69	22.92	45.47	10.24
+ vdd	17.8	40.77	7.40	27.49	52.12	11.06
+ OPERA	13.20	37.14	3.82	13.20	37.14	3.82
+ <i>fuzzycd</i>	21.12	46.44	7.45	29.01	57.88	11.30

Scalability

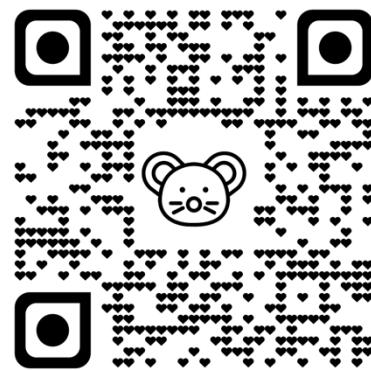
- Consistent accuracy improvement across all models
- Large gains for 7B–13B models (up to +5.4%)
- Stable improvement even in larger models (32B, 72B)
- Demonstrates strong scalability and generalizability



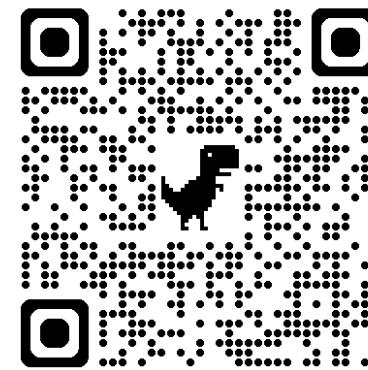
Takeaway and Conclusions

- Fuzzy logic enables the model to detect hallucination tendencies in logits
- Dynamically adjusts contrastive decoding strength based on fuzzy rules
- Balances language priors and visual evidence for stable decoding

Thank you



Contact



Paper