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3D params 𝜃 are rendered with 𝑔
When 𝜃 are GAN params, quick mode collapse = ID not 

preserved Denoiser output

Motivation

[2] Song et al., “Diffusion guided domain adaptation of image generators”, in WACV 2024.
[3] Lei et al., “DiffusionGAN3D: Boosting text-guided 3D generation and domain adaptation by combining 3D GANs and diffusion priors”, in CVPR 2024. 4



In this work, we introduce log-likelihood distillation (LD), multi-view score distillation and 
score rank weighting to GANs for domain adaptation, which has significant advantages over 

SDS.

We showcase our results under identity preserving 3D head stylization.
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Pipeline

(a) (b)
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We derive and introduce mirror (a) and grid gradients (b) to further enforce 3D-consistent and ID-preserving stylization. 
Furthermore, we omit the gradients through super-resolution layers, and apply score rank re-weighing for eliminating 

artifacts.
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Likelihood distillation instead of SDS

Subtracting ground-truth noise gives us a low-variance guidance signal, which avoids divergence but 
collapses GAN training into a single mode (i.e., identically stylized faces for different identities).

This approach can be generalized to other feedforward large reconstruction models, to create a 
stylized generator.
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Extending LD to mirror gradients and grid denoising

We divide LD gradient chain into two where poses 𝜋 and 𝜋′ do not match:  

We assume that when input 𝑥0
 𝜋  is mirrored with flip operator M, it yields the same result with 

the yaw-symmetric pose 𝜋′:

We utilize the same score estimation for 
mirror poses but also mirror the gradients.

In grid denoising, we create a 2x2 image grid and feed it to the denoiser as a whole:

Now, denoiser can implicitly correlate 
between different renders of θ.
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Rank-weighing with SVD

We perform SVD in the latent space channel (4-dim) of the denoiser, and weigh the matrices:

Qualitative ablation on rank-weighing.
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Qualitative results

(a) (b) (c) (d) (e)
(a) (b) (c) (d) (e)

Ablation on the proposed components.
Input (a), SDS (b), SDS+ControlNet (c), 

LD+ControlNet (d), ours (e).

Ablation on the proposed components.
Input (a), LD+ControlNet+rank weighing (b), grid 

after SR (c), grid before SR (d), ours (e).
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Qualitative results of our head stylization in comparison to previous state-of-the-art.

Qualitative results
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Qualitative results

Qualitative results of our head stylization in comparison to previous state-of-the-art.
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Quantitative results

Quantitative results of our head stylization in comparison to previous state-of-the-art.
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Thank you!
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Project page, preprint, and code
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