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Hello everyone, my name is Wu Shangbo. I am here to present our paper accepted to ICCV 2025, titled "Boosting Generative Adversarial Transferability with Self-supervised Vision Transformer Features".
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What are adversarial attacks and transferability?

* Adversarial examples are inputs with subtle modifications that intentionally fool deep
neural networks (DNNs) into incorrect predictions while appearing unchanged to humans.

* The transferability of adversarial examples!t! drive real-world black-box attacks on DNNs
without the adversary’s access to their internals.
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A One of the first and most popular adversarial attacks A A printable adversarial patch brings

to date: the Fast Gradient Sign Method (FGSM)!2, adversarial attacks into the real-world(3l,
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Adversarial attacks are inputs with subtle modifications that intentionally fool deep neural networks into making incorrect predictions while appearing unchanged to the human eye.
Adversarial transferability refers to the phenomenon where adversarial examples crafted for one model often remain effective at fooling different models, even across architectures and datasets.
This characteristic of adversarial examples enables real-world threats, even physical ones, such as this adversarial patch, shown on the right.
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The missing piece in feature-space attacks

* Feature-space attacks improve transferability by disrupting shared model internal features.
* Gap 1 - Existing methods target features from supervised ConvNets and rely on label-wise loss.
* Gap 2 - Features are extracted from whole intermediate layers.

 Self-supervision synergies well with the Transformer architecture!
e Offers cleaner, more generalizable representations.

* This suggests more surgical targets within ViTs, especially trained with self-supervision.

Self-supervised
token

» ViT features learnt by self-supervision
(DINO and MAE) are less noisy, more
expressive than those by supervision.

» Internal feature facets (key/query/value)
reveal less noisy, more distinct details than
token-level outputs.

DINO

MAE

ViT

Supervised
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So, transferability drives real-world black-box attacks.
Feature-level improvements are one of the most effective ways to boost adversarial transferability, as well-trained deep features within DNNs tend to generalize better, and thus, feature-space attacks excel at transferabilty.
Feature-space perturbations help, but most prior work targets supervised ConvNets or whole layer ViT tokens, which are either label-compressed or noisy. Self-supervised ViTs, in contrast, produce clean, shared semantics across layers. That points to a better target inside the transformer.
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How to utilize or exploit self-supervised ViT features?

Both structure
. . and texture are
Q is jointly trained to disrupted!
discriminate both self-

Attention saliency maps supervised ViT features

Ground truth: 230, bobtail 7

(" Dual features from self-supervised ViTs ) Black-box transfer

Model Prediction
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Swin-B 231
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e Our idea — dSVA (generative dual self-supervised ViT features attack)
 Target facet-level features: we extract representations from q/k/v feature facets to exploit.
* Exploit self-attention: we apply self-attention saliency as feature landmark guidance.

 Jointly disrupt self-supervised features: we consider the two branches of self-supervision paradigms —
contrastive learning, CL (DINO) and masked image modelling, MIM (MAE).
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Research question: How can we fully utilize the rich representations distilled by the harmonious coalition between self-supervision and the Transformer architecture, to boost adversarial transferability?
Our idea - dSVA, which refers to "generative dual self-supervised ViT features attack".


dSVA - framework overview
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 Goal: generator Gy learns to create x,4, = Gg(x) under perturbation budget ¢, s.t. deep
features of self-supervised ViTs (DINO and MAE) are maximally disrupted in a facet-aware,
attention-guided way.

x Generator Gy
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As with all generative attacks, dSVA trains a generator to craft black-box adversarial examples by discriminating self-supervised ViT features.
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dSVA — facet-level feature exploitation

* |Instead of attacking whole intermediate layer tokens, dSVA disrupts internal facets of the
self-supervised ViT’s multi-head self-attention, i.e., queries, keys, and values.

> g
sy
» Inside the Transformer encoder block: H > L
LayerNorm — MSA — MLP , 74
» Inside MSA: linear projections to q, k, v 5y H—  v-a
from previous layer tokens, and the fused t. ~=C H)

| Self-supervised ViT (Internal encoder layers) |

* Goal is to minimize cosine similarity between benign and adversarial facet features at a
chose layer [, so as to make deep representations diverge.
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For DINO (contrastive learning), the key facet best reflects the teacher guidance signal and captures shape-level structure; for MAE (masked image modeling), the query facet is more informative because it carries the masked-input signal for reconstruction. Facet-level targeting outperforms whole-layer token targeting and that the best-performing facets match the training objectives of DINO (key) and MAE (query).
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dSVA - self-attention exploitation

 Self-supervised ViTs produce clean and semantically meaningful attention saliency maps.

* Turn them into dense guidance to focus the generator on disrupting impactful features.

Shallow <

A

-r"'--
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DINO

P Attention visualized in self-supervised ViTs
(DINO and MAE) are less noisy and capture
various levels of semantics.

MAE

» Representations in supervised ViTs collapse ;
. e _ege \ Supervised ViT
into homogeneous primitive patterns. R

 Attention map at layer [: select from the [cls] token to all patch tokens across all heads, and
average over heads to get a 2D token map S*.

1
Al[CLS] = A'[:,:,0,1:]. S'= T ZAZ[CLS] 1]
h=1


主持人笔记
演示文稿备注
Self-supervised ViTs produce clean, semantically meaningful attention that highlights salient foreground regions. The saliency map is scaled by γ and apply it elementwise to features before computing the cosine loss, so that high-saliency regions weigh more in the divergence objective
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dSVA - joint self-supervision feature discrimination

* Two paradigms for self-supervision: contrastive learning, and masked image modelling.

* Contrastive learning (CL, with DINO) captures global, long-range structural cues.
* Masked image modeling (MIM, with MAE) focuses on local textural detail.

 Jointly training to exploit both structure and texture yields the most transferable
perturbations across architectures and defenses!

Logv =A-Li+(1—=X)- Ly,

/ AN

DINO’s L; MAE’s L;;

L = arg min D,y (Fl () ® (v Sl) ! (:,ca’d'”) ® (- Sl)) :
6
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Finally, the dual self-supervision feature-wise exploit.
We jointly train the adversarial generator to simultaneously discriminate both visual aspects, therefore exploiting both structure and texture, yielding the most transferable adversarial perturbations across network architectures and evading defenses.
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Evaluation

* Training dataset: training set of ImageNet (1.28 mil) used for training.
e Test dataset: NeurlPS 2017 Adversarial Learning dataset (1000 images).

* Implementation details:
e ViT-B/16 architecture for both DINO and MAE.
* ResNet generator.
e Perturbation budget € = 10.

* Competitors:
* Generative attacks: CDA, BIA (w/ surrogate VGG-19, ResNet-152, DenseNet-169, and ViT-B/16).
* Feature-level gradient-based attacks: PNA, TGR, ATT.
* Classic attack: MI-FGSM.
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Results — transferability across black-box models
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dSVA wi o i<ad Structurally
- h [f-
features, without using labels, p A .
. . o —— — — <
d O m I n ate S a C rOSS S u p e rVI S e d Attack ( VGG-16  Res-50  Den-121 ‘lEff B0 Inc-vd Inc-v4 Swin-B MaxViT PiT-B Visformer LeViT Mixer
i CDA (VGG-19)| 9931 6923  59.19 7638 5294 6196 1653  14.63  9.48 3240 2979 23.02
CO nv N etS, VITS; an d M I— PS . CDA(Res-152) | 9208 8888  §7.02 17532 6385 7497 1182 7.78 5.86 39.03 3585 2278
CDA (Den-169) | 9208 8763 07.03 |90.96 6759 7894 2688 2241 2098  69.67 65.11  52.01
. . cpc BIA (VGG-19) | 9758 7432 8493 7777 66.63 7696 1935 1525 1246 3468 3596 2753
° dSVA maintains com petltlve BIA (Res-152) l 0404 9252 647 lesil 6246 8137 2218 1732 1140 4555 29.15  29.60
BIA (Den-169) ' 93.67  86.07 9549 )81.17 7540 7178  17.36 944 1065 3271 4447 3898
pe rfO rmance on structura I Iy CDA (VIT-B/16) 9275 ~7437 ~— 90107 8723 8182 8225 6213  33.09 5074 7805 8520  80.63
. BIA (ViT-B/16) 5293  21.83 3377 3213 3155 3462 889 550 639 17.81 2734 40.68
matched CO nVN et basel INes. MI (ViT-B/16) 5259 3233 47.85 5234 38.07 3561 49.69  31.02 4292 4731 4351  65.16
PNA (VIT-B/16) 4649 3399 4268  50.64 37.97 3605 50.84 3568 4696 5104 5149 7430
. . .. . TGR (ViT-B/16) 5489 3514 5160  57.02 37.54 4035 5115 3402 4526 5072 4638 7978
° F| nd I ngs: existl ng featu re-wise ATT (ViT-B/16) 6041 4085 5655 6447 4332 4443 5910 4015 5112 5880 5602 8252
k k f I I dSVA (DINO) 86.54 5759 8317 8851 7850 7861  33.05  21.27 3504 7267 6741 7881
dSVA (MAE) 9436 7807 8636  84.04 7775 7971  47.38  31.85 3355 6325 6432 56.64
attacks cannot take Tu dSVA (Joint) 9678 8170 9483 0532 8073 0173 5983  41.29 5048  81.37 8521 8538

advantage of ViTs without
dSVA's exploitation schemes.

A dSVA’s joint variant achieves state-of-the-art transferability —
+13.70% avg over dSVA’s single-model variants.
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Feature-wise SSL exploitation and joint disruption are the difference-makers—especially beyond ConvNet targets. Affirms the quality self-supervised ViT features neglected in previous art.
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Results — transferability to defense models
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» dSVA offers superior performance across all robust models, even with SOTA defenses.

Inc- Ine- Inc- IncRes- IncRes- Eff-
Attack V3aav  V3ensd  Vdensd  V2ens V2agy DOy
CDA (VGG-19)  25.05 1636 078 10.73 3490 67.39
CDA (Res-152)  43.01 38.60 28.88 2027 61.89 73.01
CDA (Den-169) 5344 41.11 27.08 2458 66.00 83.33
BIA (VGG-19) 39.57 2835 21.24 17.60 62.19 79.71
BIA (Res-152) 32260 27.15 19.80 17.50 63.29 70.29
BIA (Den-169) 55.91 4340 37.64 30.52 59.08 86.23
CDA (ViT-B/16) 6591 5398 50.67 3854 71.11 86.23
BIA (ViT-B/16)  22.80 15.38 12.02 10.83 2497 52.17
MI (ViT-B/16) 26,67 2246  21.91 18.85 2698 55.07
PNA (ViT-B/16) 27.63 2290 22770 19.79 29.69 55.07
TGR (ViT-B/16) 30.22 2585 24.83 21.67 29.80 67.39
ATT (ViT-B/16) 4043 36,21 33.03 29.79 41.52 75.36
dsva (DINO) 66.13 54.09 4933 4385 7503 89.96
dsva (MAE) 50.11 3239 2888 2385 6670 76.09
dsSVA (Joint) 79.03 68.16 62.70 52.50 88.06 89.13

ViT-S ConvNeXt ConvNeXi-

XCiT-512  +ConvStem +ConvStem v2+Swin-L

Attack Res-18 [48]  Res-50[63] ViT-B [39] Swin-B [39] [13] [51] [51] [3]
CDA (VGG-19) 7.13 8.25 6.09 10.15 7.91 6.69 4.96 5.68
CDA (Res-152) 12.56 11.39 12.31 13.20 10.74 7.39 7.04 7.07
CDA (Den-169) 11.21 12.54 0.96 16.38 13.93 10.33 8.19 8.80
BIA (VGG-19) 12.05 11.22 8.85 12.96 11.22 0.51 7.50 7.50
BIA (Res-152) 16.13 15.35 14.52 19.32 16.06 11.97 10.61 8.24
BIA (Den-169) 14.09 14.19 18.95 22.62 16.65 10.92 9.80 9.42
CDA (ViT-B/16) 12.39 13.04 8.85 18.70 14.52 11.39 9.00 8.67
BIA (ViT-B/16) 10.70 9.90 12.86 12.47 8.97 8.10 7.50 5.03
MI (ViT-B/16) 7.81 7.92 11.62 12.96 8.26 7.51 6.46 6.96
PNA (ViT-B/16) 7.13 8.58 10.79 14.06 8.03 7.98 6.11 7.71
TGR (ViT-B/16) 12.73 11.55 16.18 18.34 12.16 11.50 8.88 9.32
ATT (ViT-B/16) 12.22 12.05 17.70 19.19 12.04 11.27 8.65 10.49
dsva (DINO) 20.88 19.47 23.93 26.28 21.49 15.96 12.80 11.67
dsva (MAE) 15.11 14.69 14.52 18.46 15.94 11.50 10.04 10.39
dsSVA (Joint) 19.19 19.64 21.44 24.45 22.31 14.79 12.11 11.99

A dSVA’s joint variant exceeds

baselines by +32.98% avg.

A dSVA excels at evading even SOTA defenses
(These models come from robustbench!l]).

* Even robust models require essential features, dSVA destroys them at a generalized level.
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Defenses improve resilience, but models still depend on shared features—we target those more generally with SSL-ViT features.
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Results — qualitative visualizations

* PCA projections of facet-level features before v.s. after the attack.
* Self-supervised ViT features are richer and less noisy than supervised.

e dSVA disrupts both structural + textural semantics consistently.

keyfacets show clearer shapes value and token facets contain Notice how all meaningful representations are Self-supervised
than the others for DINO - more noise than keys or queries equally destroyed in the adversarial examples
token key query value token
(@]
=
=)
- i
wl
<
: - d
e
queryfacets show less noisy [— =
el textures than others for MAE ek LT
! - e
= L]
: My
i -
| ViT features learnt by supervision are consistently unmeaningful. In Supervised
contrast, self-supervised ViT features are more expressive!

A Visualize facet-level feature disruptions,
comparison between self-supervised v.s. supervised. 12
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We additionally visualize facet-level features before v.s. after the attack. We can see how clean structure/texture manifolds get scrambled post-attack—across both SSL feature families.
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Results — analysis on parameter impact

* Feature facet: g or k facet more robust than v or t (token).
e Layer: penultimate best ([ = 10), last layer ([ = 11) drops generalizability.

 Joint training parameter: sweet point liesin A = 0.5, i.e., middle point.

Target Model
A VGG-16 Den-121 [ Incv3 [ Swin-B PiT-B 0 LeviT

Target Model
Res-50 A Eff-BO Inc-v4 [ MaxViT Visformer = Mixer-B/16 e VGG16 DEi-121] ~—s Inc_v3g a OSWm_B PIT-B — LeViT

3 100 «— Res-50 —— Eff-B0 Inc-vd —=— MaxViT Visformer —s— Mixer-B/16
S —e= Mean —
[0} I J
5 80 ) % 100 Target Model
o . [ . E —— VGG-16 Den-121 —«— Inc-v3 —+— Swin-B PIT-B o LeViT
o 61.23% I 60.44% 59.21% J 60.96% < 80 Res-50 —— Eff-B0 Inc-vd —— MaxViT Visformer —+— Mixer-B/16
35 60 ( < = g 100 —— T
g 1 g 60 — =
& 401 - B : d 7 - g | =
o] 8 | ) 3 404 8 god " . 23 , 2 .\;
E i g P % — —.—/I\. ‘ J e
a . W ) = IS 1 e
< 201 B & 2 20 < | ——
S H? R q S £ 607 i
(%) %] °
© : — - T 9 S I
< 100 S 1001 n !
S - & & a0l
%; o— Mea P § 40 -
£ 80 & 804 S T
o r o < *t
o 7 59:40% ' L 3 20

. ol - o T ©
= 607 51 .7_91/1/,«,‘—: =_ .43,59% o
o \ i 0 !
< .| W ) Q| o 40+ 0 I
E" 401 LR ] 27.35% g ;i 0.1 0.2 03 0.4 05 0.6 07 08 0.9

| B o > 20 ¢ Lambda (A
S og 1 Q < (A)
=~ 201 | [ ¢
< . W ] b o
> i 0 .
%) 1 2 3 4 5 6 7 8 9 10 1
$ [ e

0- T T Layer /
key query value token
Facet

A Facet choice (q, k, v, or t) A Layer choice (I = 1to 11) A ] choice (from 0.1 to 0.9) .


主持人笔记
演示文稿备注
Our proposed dSVA’s gains are robust to sensible settings and grounded in the behavior of SSL ViT internals. We argue that the while CL provided structures are crucial for shape/object distinction from a human standpoint, to craft generalized perturbation for fooling DNNs, textural details distilled by MIM ought to be more purposefully considered, as DNNs favor these fine-grained details.


|CCV el il
Results — ablations

Compare dSVA ...

* With supervised ViT-B/16 as surrogate v.s. using DINO/MAE.
* Applying attention saliency regularization or not.

dSVA always performs better with self-supervised ViT features.

* Supervised ViT’s attention impairs adversarial effectiveness.

dSVA (Joint) works best with attention regularization active when targeting more
sophisticated models.

Attack

dSVA (Supervised ViT) w/o attention dSVA (DINO) w/o attention dSVA (MAE) w/o attention dSVA (Joint) w/o attention
B dSVA (Supervised ViT) w/ attention [ dSVA (DINO) w/ attention [0 dSVA (MAE) w/ attention I dSVA (Joint) w/ attention
100

80 1 u
g |1 B
2 604" E
= |
) l
o ‘ B
£ 2010 B F
e} [l
(@] | —
L =

201 ¢ =

0- — ' .
VGG-16 Res-50 Den-121 Eff-BO Inc-v3 Inc-v4 Swin-B MaxViT PiT-B Visformer LeViT Mixer-B/16

Target Model 14
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Two factors: (1) self-supervision, and (2) self-attention exploitation.
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» dSVA delivers +6% avg improvements in most cross-domain cases v.s. strong generative

attack competitors (CDA/BIA).

CUB-200-2011

Stanford Cars

FGVC Aircraft

Domain
Attack s A CIFAR- CIFAR- SVHN STL-
10 100 10
CDA (VGG-19) i 12.65 30.79 3.36 7.56
CDA (Res-152) i 10.34 28.23 5.49 6.15
CDA (Den-169) i 2742 53.22 6.84 10.31
BIA (VGG-19) i 30.04 68.25 6.38 0.84
BIA (Res-152) /i 26.24 49.36 3.75 7.35
BIA (Den-169) i 22.05 45.82 12.79 10.75
dsva (DINO) 16 w/o 13.98 37.67 12.88 11.07
dsva (DINO) 8 wlo 24.05 53.00 6.54 11.18
dsva (DINO) 16 w/ 13.34 3742 9.30 12.66
dsva (DINO) 8 w2194 48.94 7.53 10.70
dsvAa (MAE) 16 w/o 16.89 35.80 6.80 10.41
dsva (MAE) 8 wlo 2477 41.15 9.13 10.26
dsvA (MAE) 16 w/ 17.47 34.32 4.91 9.31
dsva (MAE) 8w/ 2430 44.61 6.74 11.44
dSVA (Joint) 16 w/o 2364 50.28 8.04 11.04
dsvA (Joint) 8 wio 2687 SRISS 8.83 12.42
dsVA (Joint) 16w/ 21.56 43.25 8.82 11.89
dSVA (Joint) 8 w2413 46.73 11.73 11.95

Attack s A
Res-50 SENetl154 SE-Res-101  Res-50 SENetl54 SE-Res-101  Res-50 SENetl54 SE-Res-101

CDA (VGG-19) / / 29.49 20.94 20.79 21.84 20.95 10.42 24.81 40.91 23.02
CDA (Res-152) / / 49,85 48.77 34.77 48.08 37.91 21.60 33.80 48.01 36.19
CDA (Den-169) / / 39.55 29.52 36.40 42,16 25.26 19.22 30.61 32.92 33.77
BIA (VGG-19)  / / 62.21 52.78 36.84 70.93 37.01 29.86 82.61 51.17 51.27
BIA (Res-152) / / 63.53 68.15 38.92 56.91 58.49 19.03 41.52 77.61 42.33
BIA (Den-169) / ! 83.36 65.75 45.77 91.67 51.75 52.57 96.16 59.78 65.22
dSVA (DINO) 16 w/o 38.86 51.65 43.66 53.57 59.22 50.79 72.52 81.45 64.73
dSVA (DINO) 8 wio  TLI18 61.15 59.57 49.39 59.76 56.23 54.38 77.71 67.96
dSVA (DINO) 16 w/ 41.55 4948 47.75 47.01 51.25 47.23 53.57 61.83 66.10
dsSVA (DINO) 8 wi 33.68 40.99 38.12 33.78 37.92 20.92 37.12 46.25 55.68
dsSVA (MAE) 16 w/o 4293 51.81 37.56 28.80 47.10 20,24 34.13 50.62 43.86
dsVA (MAE) 8 wio  37.38 58.97 36.44 44,28 38.30 26.74 29.70 50.10 36.58
dSVA (MAE) 16 w/ 60.08 63.80 42.42 41.22 62.48 26.79 38.81 72.95 57.45
dSVA (MAE) 8 w/ 42,38 62.11 41.99 46.04 38.99 29.33 30.41 52.90 43.73
dSVA (Joint) 16 wio T8.77 79.62 66.11 48.67 68.47 51.97 65.65 89.24 83.15
dSVA (Joint) 8 wio 6258 7217 59.11 41.42 55.68 41.17 46.76 75.07 63.62
dSVA (Joint) 16 w/ 76.44 79.64 69.72 47.29 67.91 50.99 68.94 89.93 77.37
dSVA (Joint) 8 wi 70.88 78.85 68.24 47.25 66.30 50.12 68.15 87.97 74.10

A Cross-domain transferability (towards
coarse-grained classification domains)

A Cross-domain transferability (towards fine-
grained classification domains.
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Even with only ImageNet knowledge, the adversarial effectiveness of dSVA carries across domains, maintaining superior performance over major generative attack competitors: CDA and BIA.
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Conclusion

dSVA - a generative adversarial attack that successfully exploits deep features distilled
through the self-supervised learning of ViTs.

Key takeaways:

* Dual exploitation of visual structure (CL, from DINO) and texture features (MIM, from MAE)
— brings complementary improvements.

 Facet-level self-supervised ViT features (q/k facets) — powerful fine-grained attack targets
better than whole-layer tokens, no class or labels required.

* Self-attention saliency guidance — further pushes attack effectiveness, especially on newer
architecture DNNs, yielding SOTA transferability and defense evasion.
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Thank you!

Shangbo Wu
shangbo.wu@bit.edu.cn
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