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BACKGROUND

Diffusion-generated images detection

Effective methods to detect diffusion-generated images are in ImageNet Midiouney SDVI4 SDVLS ADM  GLIDE Wukong VODM  BigGAN
increasing demand as diffusion-based models can produce highly Y a' ' —. AR
realistic images.
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Recent studies on fake image detection fall into two categories.

Methods based on obvious artifacts have largely disappeared
as generators improve.
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Methods based on Statistical features such as reconstruction
error by diffusion model are gaining prominence.
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Even when reconstruction error-based method works on in . .. .
Visualization of images on Genlmage dataset.
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Samples from our proposed DRCT-2M dataset.



BACKGROUND

A brief introduction to Diffusion Model
A diffusion model typically involves two processes.

The forward process is defined as below, where x; is the noisy image at the t-th step, o is a predefined noise
schedule,and T is the total steps.

alaubxe1) = Nesy [ -oxe, (1= 250T), (1)

According to the property of Markov chain, we can get x; from X, via:

q(xt|x0) = N (x¢t; v/arxo, (1 — ar)T) . )

The reverse process is also formulated as a Markov chain in DDPM, using a network pg(x¢_1 [xt) to fit the real
distribution q(X¢—1 | X¢ ):

Po(X¢—1[xt) = N (Xe—1; g (Xs, 1), Bo(x¢,1)) . (3)

DDIM proposes a new deterministic method without the Markov hypothesis. The new reverse process is
formulated as: Xt — /T = ares(xe,t)

Xt—1 = at—l(

)+
Ve @)

\/ 1-— Q1 — U?E()(Xt,t) + o€ .




BACKGROUND

Uncertainty in the Diffusion Process

Uncertainty can have a significant impact on statistical feature, such as the commonly used reconstruction error, in
diffusion-generated image detection.

Types of uncertainty:

Epistemic. Uncertainty in model structure and parameters, which captures the model’s lack of knowledge about
unfamiliar patterns

Aleatoric. Uncertainty inherent in the observation data, which reflects data noise and randomness.

For detecting generated images, it is essential to disentangle the overall uncertainty in diffusion measurements and
focus on more effective features.




BACKGROUND

A brief introduction to Epistemic uncertainty
Epistemic uncertainty can be modeled by placing an isotropic Gaussian prior p(6) over the model‘s parameters €g(x¢, t) ,in
Bayesian Neural Networks (BNNs)
Let D be the training dataset, the target of BNNss is to infer the posterior p(8|D) and predict distribution of noise for noise-

corrupted data x; with
p(etlni D) = [ pleles(xi,0) p(OID) do

Since p(0|D) cannot be computed directly, Laplace Approximation (LA) approximates it with
q(6) = NV (6; Omap, X)
Where By4p is the maximum a posteriori (MAP) estimate,and 3 = [-V5(logp(D|6) + logp(8))|y = HMAP]_l. Two
techniques have been proposed to simplify the estimation of )’
Hessian approximations with factorization, and the most lightweight case is a diagonal factorization which ignores off-

diagonal elements

The subnetwork LA, and the last-layer LA (LLLA) is its special case which only treats the parameters of the last

probabilistically
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PREDICTIVE AMBIGUITY IN RECONSTRUCTION ERROR

Relying on diffusion-based measurements (e.g., reconstruction error) to identify generated images can
become misleading when aleatoric uncertainty dominates, as it inflates prediction ambiguity.

Aleatoric uncertainty arises from inherent noise in the observed data and reflects aspects of the task that are
intrinsically difficult. It does not increase for out-of-distribution (OOD) samples, making it unsuitable for detecting such
anomalies

The difference in reconstruction error becomes less significant when compared to the standard deviation caused by
aleatoric uncertainty.
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RETHINKING UNCERTAINTY IN THE DIFFUSION PROCESS

Both aleatoric and epistemic uncertainty, inherent in the diffusion, contribute to diffusion reconstruction
error.

Relying solely on reconstruction error is less effective in distinguishing real from fake images when aleatoric
uncertainty is high.

Epistemic uncertainty increases significantly for samples that fall outside the domain of the training data and
consequently provides a more reliable basis for anomaly detection.

Epistemic uncertainty more accurately distinguishes real samples from fake ones.
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DIFFUSION EPISTEMIC UNCERTAINTY FEATURE ESTIMATION

Epistemic uncertainty for generated image detection

To estimate diffusion epistemic uncertainty, the forward and reverse diffusion process are performed in the latent
space X' = {x(i)} encoded by a pre-trained VAE model.

The epistemic uncertainty in the diffusion model €4 (x;, t) is captured by
Varg(x,_,x, t)(xt_l) & Varg(Ee(ug(Vax + (1 — ap)e, 1))

A Bayesian diffusion model is built by placing a prior distribution p(8) over the parameters of a pre-trained diffusion
model €g(x¢, t) .With the inferred posterior p(8]D), we cat get the predict mean via:

Bo(1) = | POIDIE (ko (v + (1 — ae,0)d6

We leverage the LLLA with diagonal factorization to approximate p(6|D) as
q(6) = N (8; Omap, X)

By the Monte Carlo approximation, we sample model parameters 0; ~ q(6) = NV'(6; Oyap, 3.) and noise €; ~
N(0,I),where i= I,.,Mandj=1I,.., N.Then epistemic uncertainty is computed as

U(xe—q | x,t) = Vari(IEj[ugi(\/m+ (1 — ar)ej, 1:)])




DIFFUSION EPISTEMIC UNCERTAINTY FEATURE ESTIMATION

Epistemic uncertainty for generated image detection

Let u be the spatially aligned epistemic uncertainty and v be the visual feature map. i be the mean epistemic
uncertainty feature, which is the average of u.The global epistemic uncertainty feature be z;, which is computed using
an attention pooling on u.And the refined visual feature is computed with a multi-head attention module:

z, = MHA(U, u,v)

Spatial
Align

Uncertainty

Point-wise
Feature Map Product

Workflow of our method. In the first stage, we utilize the Laplace approximation to estimate diffusion epistemic
uncertainty. In the second stage, we exploit diffusion epistemic uncertainty to train a binary classifier with asymmetric
learning.




ASYMMETRIC LEARNING METHOD

To learn an even decision boundary with larger margins while preserving the information content of the
representation, ASL is proposed.

Using an asymmetric contrastive loss which maximizes the distance of negative pairs and minimizes the distance of
positive pairs by class- specific margins. The loss is as:

L NZ (1) = 3’1 = C] max(O m¢ — SW(l)) + ]I[ @ * yl(z)] maX(O' SW(i))

where N is the total number of sample pairs, yi is the bi- nary label for each sample (0 denotes the real class), sW (i)
is the Cosine similarity between the samples in each pair, mc is the margin specific to the class c.

Consider the wide range of features exhibited by the real class, we propose the implementation of a smaller
similarity margin specifically for the real class.

The overall loss function is a weighted average of cross-entropy loss, asymmetric contrastive loss:

W) = £.(W) + A, (W)

where | is the cross-entropy loss, A is the hyper-parameter controlling the importance of Im.
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EXPERIMENTAL SETUP

Datasets
We conduct evaluations on two large-scale datasets: Genlmage and DRCT-2M

Genlmage comprises 2,681,167 images, segregated into 1,331,167 real images from ImageNet and 1,350,000 fake
images generated from eight generative model.

DRCT-2M consists of two parts: 1,920,000 images generated by various diffusion-based generative models and the
real images from MSCOCO

Experimental settings

We compared our method with several state-of-the-art image generation detection approaches. All experimental
setups followed the guidelines established by the Genlmage and DRCT-2M benchmarks. Each trained model was
then evaluated on all eight test subsets.

We conducted generalizability comparisons across generators on Genlmage and DRCT-2M, respectively.

We conducted cross-dataset experiments following DRCT




EXPERIMENTAL RESULTS

| Performance in Genlmage

In the scenario where DRCT DR was not applied, our method outperformed the state-of-the-art by 6.5% in average
accuracy (ACC).

When integrated with DRCT DR, our method shown an additional gain, outperforming DRCT by 2.4% in average ACC.

DRCT DR Method Midjourney SDV14 SDV1.5 ADM GLIDE Wukong VQDM BigGAN Avg.
F3Net zccv 200 55.1 73.1 73.1 66.5 57.8 72.3 62.1 56.5 64.6

GramNet (cver 2020) 58.1 72.8 72.7 58.7 65.3 71.3 57.8 61.2 64.7

wlo UnivFD (cver 20231 70.1 74.8 75.0 62.9 71.6 72.2 64.8 60.4 69.7
DIRE ncev 203 65.0 73.7 73.7 61.9 69.1 74.3 63.4 56.7 67.2

LaRE? (cve 2024 66.4 87.3 871 667 813 85.5 844 740 791

Ours 80.7 89.1 88.6 78.9 88.4 88.1 86.6 83.7 85.6
DRCT/ConvB e 204) 78.2 97.6 97.1 74.2 753 m 72.3 67.6 82.3

w/ DRCT/UniFD nem 2024 83.8 93.1 92.6 83.2 89.5 92.9 91.8 86.0 89.1
Ours 86.4 96.5 96.2 85.3 944 96.2 93.1 84.2 91.5

Accuracy (ACC, %) comparisons on Genlmage test subsets. Eight models are trained on eight generators respectively.
All the eight models are tested on the specified test subsets, and averaging the accuracy scores yields the final results




EXPERIMENTAL RESULTS

2 Generalizability Across Generators

Comparison on Genlmage. Our method experienced less performance degradation across subsets with different
generators, achieving an overall average ACC improvement from 79.1% to 85.6%
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(a) Comparison on ACC. Left: baseline, right: ours. (b) Comparison on AP. Left: baseline, right: ours.

Results of cross-validation on Genlmage. We train eight models on eight subsets respectively, each
corresponding to a different generator.

Comparison on DRCT-2M. Our method is robust in previously unseen diffusion models, such as SDXL, SDXL-Turbo,
and LCM-SDXL especially, results in an overall improvement in average accuracy from 88.0% to 90.5%.

SD Variants Turbo Variants LCM Variants ControlNet Variants DR Variants
DRCTDR  Method DR LDM SDvid4 SDvi5 Spvz spx SDXL- SD- SDXL- LCM- LCM- SDvi- SDv2- SDXL- SDvi- SDv2 SDXL- Avg.
i v v Refiner Turbo Turbo SDvlI5S SDXL Cul Cul Cuel DR DR DR

F3Net - 999 998 9.8 887 559 874 683 637 977 550 980 724 820 654 504 503 771

GramNet - 994 990 988 953 626 807 712 693 931 570 900 756 87 512 500 501 766

UnivFD - 983 962 963 938 910 939 84 859 904 890 904 8L1 8.1 520 510 505 835

wlo  DIRE SDvl 982 999 1000 682 538 719 589  S44 998 597 997 642 591 520 500 500 712
LaRE? SDvl 994 1000 1000 963 972 976 986 864 961 942 964 992 962 495 506 500 880

Ours SDvl 992 992 992 992 992 991 992 991 992 992 992 992 992 547 531  S5L1 905

Ours SDv2 992 991 992 994 99.4 992 993 992 991 992 992 994 994 541 512 522 905

DRCT/Conv-B  SDvl  99.9 99.9 99.9 963 839 85.6 91.9 70.0 99.7 78.8 99.9 95.0 81.2 99.9 95.4 754 908
DRCT/Conv-B  SDv2  99.7 98.6 98.5 99.9  96.1 98.7 99.6 833 98.5 93.8 96.7 99.9 91.7 93.9 99.9 904  96.6
DRCT/UniFD  SDvl  96.7 96.3 96.3 94.9 96.2 93.5 93.4 92.9 91.2 95.0 95.6 92.7 92.0 94.1 69.6 574 90.5

w/ DRCT/UniFD  SDv2 945 94.4 942 95.1 95.6 95.4 948 94.5 91.7 95.5 939 935 93.5 843 832 67.6 91.4
Ours SDvl 999 99.9 99.9 999 9.9 99.4 99.4 99.3 99.1 99.4 99.9 99.4 9.4 99.9 94.2 90.1 987
Ours SDv2  99.4 99.7 99.8  100.0 1000 995 99.5 99.5 99.3 99.2 99.4 99.9 99.9 99.2 95.3 90.1 988

Accuracy (ACC, %) comparisons on DRCT-2M. All methods are only trained on SDv1.4 and evaluated on different test
subsets on DRCT-2M.




EXPERIMENTAL RESULTS

2 Generalizability Across more Generators

Comparison on UniversalFakeDetect dataset. DEUA achieved competitive or even superior performance compared
to existing unified detectors when trained on diffusion models

GAN Deep Low level Perceptual loss LDM Glide
. Pro- Cycle- Big- Stle- Gaw- Sur fakes g1 SAN CRN IMLE Guided 5oy 200 100 100 50 100 Dalle Ave
GAN GAN GAN GAN GAN GAN steps  w/cfg steps 27 27 10
NPR (ProGAN) 998 950 876 962 866 998 769 669 986 500 500 84.6 977 980 982 963 972 974 872 876
FatFormer (ProGAN)  99.9 99.3 99.5 972 994 998 932 81.1 68.0 695 69.5 76.0 986 949 987 944 947 942 988 909
NPR (SDv1.4) 572 73.8 652 660 535 990 529 53.0 684 488 50.8 56.2 926 929 927 90.8 864 899 695 716
DRCT (SDv1.4) 99.6 93.6 876 992 901 999 723 678 605 682 59.3 92.9 99.8 99.6 99.8 99.8 99.8 999 912 885
DEUA (SDv1.4) 99.5 942 85.3 984 905 995 806 725 764 713 74.5 94.8 995 996 999 99.6 99.8 998 964 912

ACC comparisons on the UniversalFakeDetect Dataset. Results of NPR, FatFormer and C2P-CLIP trained on ProGAN are
from paper C2P-CLIP. Results of NPR and DRCT trained on Genlmage SDv1.4 are obtained using their official checkpoints.

Comparison on novel generative paradigms, including diffusion transformers and autoregressive models. DEUA
consistently maintains high detection accuracy on these emerging architectures, further confirming its adaptability
and effectiveness

Unet Transformer Autoregressive
Method SDvl4 SDv3 SDv35  JanusPRO A&
NPR (ProGAN) 76.6 76.2 77.8 76.3 76.7
FatFormer (ProGAN) 83.2 70.1 65.4 82.6 75.3
NPR (SDv1.4) 98.2 80.1 83.6 86.5 87.1
DRCT (SDv1.4) 95.1 91.2 90.4 93.9 92.7
DEUA (SDv1.4) 99.2 97.3 96.1 98.1 97.7

ACC comparison on new generators. SDv3, sdv3.5 and JanusPRO are collected following Genlmage. Results of NPR,
FatFormer and DRCT are obtained using their official checkpoints



EXPERIMENTAL RESULTS

3 Generalizability Across Datasets

Our method demonstrated stronger generalization, with smaller declines in both ACC and AP metrics under identical
cross-dataset conditions, which offers improved robustness across varying image content.

Methods based on diffusion reconstruction errors, such as DIRE and LaRE2 , encountered substantial challenges in
maintaining performance across different datasets.

Additionally, despite its diffusion focus and orthogonality to unified schemes, DEUA stays competitive and is an
effective module in larger frameworks

DRCTDR Method Midjourney SDV14 SDV1S ADM  GLIDE Wukong VQDM BigGAN  Avg.
F3Net ecev 01 71.7/80.4  97.5/99.0 96.7/98.8 55.9/66.1 62.2/742 88.1/93.2 62.8/73.1 50.1/50.5 73.2/79.4

GramNet (cvex 2020 702/81.3  86.5/922 86.1/91.6 52.2/62.5 53.5/65.4 76.3/88.7 54.2/64.6 49.8/50.7 66.1/74.6

o UniFD (cvrraony 73.6/80.1  74.2/842 742/839 563/642 70.8/80.2 73.3/82.5 56.9/64.8 61.2/72.4 67.6/76.5

W DIRE (cov 20z 52.4/54.6  56.1/60.2 55.7/60.0 50.2/53.2 50.4/562 54.2/60.2 49.2/554 49.2/524 52.2/56.5
LaRE? cver 4 56.2/71.0  55.1/61.6 54.5/61.5 51.3/65.6 60.4/75.4 53.3/62.0 52.8/65.9 46.1/572 53.7/65.0

Ours 92.2/944  97.6/99.1 97.2/99.1 79.4/90.6 90.1/94.2 96.8/98.4 91.4/94.6 71.6/86.1 89.5/94.5
DRCT/Conv-B roviay  94.6/98.2  99.6/99.9 99.4/99.9 65.8/782 73.2/88.4 99.4/99.9 77.8/89.6 60.4/76.5 83.8/91.3

w/ DRCT/UniFD rowang  86.1/932  93.4/97.4 932/97.1 74.2/82.3 85.1/90.1 93.2/96.8 89.6/94.2 86.2/91.8 87.6/92.9
Ours 92.7/95.1  98.1/99.2 97.5/99.2 78.8/90.2 89.7/942 97.2/99.2 90.7/94.4 75.8/90.5 90.1/95.3

Accuracy (ACC, %) / average precision (AP, %) comparisons of generalizability across datasets. All methods are trained on DRCT-
2M/SDv1.4 using SDv1 as the diffusion reconstruction model and evaluated on different testing subsets of Genlmage.



EXPERIMENTAL RESULTS

4 Ablation Experiments

Each individual element provides an independent performance improvement.

Influence of Diffusion Epistemic Uncertainty

Integrating diffusion epistemic uncertainty into our model led to the most substantial improvement of 14.2%/8.0%
ACC/AP compared to the baseline

Influence of Asymmetric Learning

led to substantial performance gains on the Big- GAN subset, achieving increases of 22.0% in ACC and 17.6% in AP
over the baseline

Method DEU ASL Midjourney SDV1.4 SDV1.5 ADM GLIDE Wukong VQDM BigGAN Avg.
A 62.8/82.1  99.9/100.0 99.9/100.0 57.2/88.3 78.4/94.5 99.3/99.9  60.2/88.2 50.8/72.6 76.1/90.7
B Vv 94.1/99.2  99.6/100.0 99.8/100.0 78.5/99.2 91.8/99.6 99.2/99.9  92.8/99.9  66.4/92.1 90.3/98.7
C Vv 71.5/86.2 98.4/99.8 99.2/100.0 64.6/91.5 80.2/94.8 98.2/99.6  68.6/88.2 72.8/90.2 81.7/93.8
D Vv Vv 95.0/99.4  98.7/100.0 99.5/100.0 80.3/99.2 93.0/99.9 98.6/100.0 93.4/100.0 73.6/99.2 91.5/99.7

Ablative study results on Genlmage test subsets




OUTLINE

Background: Diffusion-generated Images Detection and Uncertainty Estimation
Perspective: Uncertainty Matters in Diffusion-Generated Image Detection
Predictive ambiguity in Reconstruction error

Rethinking Uncertainty in the Diffusion Process
Method

Diffusion Epistemic Uncertainty Feature Estimation

Asymmetric Learning method
Experiments

Conclusion




CONCLUSION

In this work, we propose a novel framework for detecting diffusion-generated images with DEUA, Diffusion
Epistemic Uncertainty and Asymmetric Learning method

We observe that recent approaches relying on diffusion reconstruction error as a feature exhibit limited
generalizability due to the influence of aleatoric uncertainty and introduce a new feature, diffusion epistemic
uncertainty, which quantifies the deviation of an image from the manifold of diffusion-generated images.And
Asymmetric Learning further boosts generalization.

Experimental results demonstrate that our method achieves state-of-the- art generalizability across a
variety of generation methods and datasets.
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