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• Diffusion-generated images detection

• Effective methods to detect diffusion-generated images are in 
increasing demand as diffusion-based models can produce highly 
realistic images.

• Recent studies on fake image detection fall into two categories.

• Methods based on obvious artifacts have largely disappeared 
as generators improve.

• Methods based on Statistical features such as reconstruction 
error by diffusion model are gaining prominence. 

• Even when reconstruction error-based method works on in
distribution data, it struggles to generalize to data with unfamiliar 
pattern.

Visualization of images on GenImage dataset. 
SD is short for Stable Diffusion
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Samples from our proposed DRCT-2M dataset.



• A brief introduction to Diffusion Model 

• A diffusion model typically involves two processes. 

• The forward process is defined as below, where x! is the noisy image at the t-th step,  α! is a predefined noise 
schedule, and T is the total steps. 

• According to the property of Markov chain, we can get x! from x" via: 

• The reverse process is also formulated as a Markov chain in DDPM, using a network  𝑝θ(x!#$ |xt) to fit the real 
distribution q(x!#$ | x! ): 

• DDIM proposes a new deterministic method without the Markov hypothesis. The new reverse process is 
formulated as: 
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• Uncertainty in the Diffusion Process 

• Uncertainty can have a significant impact on statistical feature, such as the commonly used reconstruction error, in 
diffusion-generated image detection.

• Types of uncertainty: 

• Epistemic. Uncertainty in model structure and parameters, which captures the model’s lack of knowledge about 
unfamiliar patterns 

• Aleatoric. Uncertainty inherent in the observation data, which reflects data noise and randomness.

• For detecting generated images, it is essential to disentangle the overall uncertainty in diffusion measurements and 
focus on more effective features. 
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• A brief introduction to Epistemic uncertainty 

• Epistemic uncertainty can be modeled by placing an isotropic Gaussian prior 𝑝 𝜃 over the model‘s parameters 𝜖% 𝑥&, 𝑡 , in
Bayesian Neural Networks (BNNs)

• Let 𝒟 be the training dataset, the target of BNNs is to infer the posterior 𝑝 𝜃|𝒟 and predict distribution of noise for noise-
corrupted data 𝑥&∗ with 

𝑝(𝜖&∗|𝑥&∗, 𝒟) = .𝑝(𝜖|𝜖% 𝑥&∗, 𝑡 ) 𝑝(𝜃|𝒟) 𝑑𝜃

• Since 𝑝 𝜃|𝒟 cannot be computed directly, Laplace Approximation (LA) approximates it with
𝑞 𝜃 = 𝒩(𝜃; 𝜃()*, ∑)

• Where 𝜃+,- is the maximum a posteriori (MAP) estimate, and 4∑ = [−∇%.( log 𝑝(𝒟|𝜃) + log 𝑝(𝜃))|% = 𝜃+,-
#$
. Two 

techniques have been proposed to simplify the estimation of ∑

• Hessian approximations with factorization, and the most lightweight case is a diagonal factorization which ignores off-
diagonal elements 

• The subnetwork LA, and the last-layer LA (LLLA) is its special case which only treats the parameters of the last 
probabilistically 
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• Relying on diffusion-based measurements (e.g., reconstruction error) to identify generated images can 
become misleading when aleatoric uncertainty dominates, as it inflates prediction ambiguity. 

• Aleatoric uncertainty arises from inherent noise in the observed data and reflects aspects of the task that are 
intrinsically difficult. It does not increase for out-of-distribution (OOD) samples, making it unsuitable for detecting such 
anomalies 

• The difference in reconstruction error becomes less significant when compared to the standard deviation caused by 
aleatoric uncertainty.

Diffusion Reconstruction error and predictive ambiguity due to aleatoric uncertainty 

PREDICTIVE AMBIGUITY IN RECONSTRUCTION ERROR



• Both aleatoric and epistemic uncertainty, inherent in the diffusion, contribute to diffusion reconstruction 
error.

• Relying solely on reconstruction error is less effective in distinguishing real from fake images when aleatoric 
uncertainty is high.

• Epistemic uncertainty increases significantly for samples that fall outside the domain of the training data and 
consequently provides a more reliable basis for anomaly detection. 

• Epistemic uncertainty more accurately distinguishes real samples from fake ones.

RETHINKING UNCERTAINTY IN THE DIFFUSION PROCESS 

Distribution of diffusion reconstruction error (real samples overlapped with that of fake 
samples due to the presence of aleatoric uncertainty ), aleatoric uncertainty ( nearly 

indistinguishable ), and 
epistemic uncertainty in real and generated samples
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• Epistemic uncertainty for generated image detection

• To estimate diffusion epistemic uncertainty, the forward and reverse diffusion process are performed in the latent 
space 𝒳 = 𝐱 𝐢 encoded by a pre-trained VAE model. 

• The epistemic uncertainty in the diffusion model 𝜖% 𝑥&, 𝑡 is captured by 

𝑉𝑎𝑟0 𝑥&#$ 𝑥, 𝑡 𝑥&#$ ∝ 𝑉𝑎𝑟%(𝔼1(𝜇%( 𝛼!x + (1 − 𝛼!)𝜖, t)))

• A Bayesian diffusion model is built by placing a prior distribution 𝑝(θ) over the parameters of a pre-trained diffusion 
model 𝜖% 𝑥&, 𝑡 . With the inferred posterior 𝑝(θ|𝒟),  we cat get the predict mean via:

𝔼%(x!#$) = .𝑝(θ|𝒟)𝔼1(𝜇%( 𝛼!x + (1 − 𝛼!)𝜖, t))dθ

• We leverage the LLLA with diagonal factorization to approximate 𝑝(θ|𝒟) as 
𝑞 𝜃 = 𝒩(𝜃; 𝜃()*, ∑)

• By the Monte Carlo approximation, we sample model parameters 𝜃2 ∼ 𝑞 𝜃 = 𝒩(𝜃; 𝜃()*, ∑) and noise 𝜖3 ∼
𝒩(0, Ι), where i= 1, .., M and j = 1, ..., N. Then epistemic uncertainty is computed as 

𝑈 𝑥&#$ 𝑥, 𝑡 = 𝑉𝑎𝑟4 𝔼5 𝜇%! 𝛼&𝑥 + 1 − 𝛼& 𝜖5, 𝑡

DIFFUSION EPISTEMIC UNCERTAINTY FEATURE ESTIMATION 



• Epistemic uncertainty for generated image detection

• Let u be the spatially aligned epistemic uncertainty and v be the visual feature map. Lu be the mean epistemic 
uncertainty feature, which is the average of u. The global epistemic uncertainty feature be z6, which is computed using 
an attention pooling on u. And the refined visual feature is computed with a multi-head attention module:

𝑧7 = 𝑀𝐻𝐴 𝑢, 𝑢, 𝑣

Workflow of our method. In the first stage, we utilize the Laplace approximation to estimate diffusion epistemic 
uncertainty. In the second stage, we exploit diffusion epistemic uncertainty to train a binary classifier with asymmetric 
learning. 

DIFFUSION EPISTEMIC UNCERTAINTY FEATURE ESTIMATION 



• To learn an even decision boundary with larger margins while preserving the information content of the 
representation,  ASL is proposed. 

• Using an asymmetric contrastive loss which maximizes the distance of negative pairs and minimizes the distance of 
positive pairs by class-specific margins. The loss is as:

ℓ8 =
1
𝑁W
49$

:

𝕀 𝑦4
$ = 𝑦4

. = 𝑐 ⋅ max 0,𝑚; − 𝑠< 𝑖 + 𝕀 𝑦4
$ ≠ 𝑦4

. ⋅ max 0, 𝑠< 𝑖

• where N is the total number of sample pairs, yi is the bi- nary label for each sample (0 denotes the real class), sW (i) 
is the Cosine similarity between the samples in each pair, mc is the margin specific to the class c. 

• Consider the wide range of features exhibited by the real class, we propose the implementation of a smaller 
similarity margin specifically for the real class. 

• The overall loss function is a weighted average of cross-entropy loss, asymmetric contrastive loss: 

ℓ 𝑊 = ℓ; 𝑊 + 𝜆ℓ8 𝑊

• where lc is the cross-entropy loss, λ is the hyper-parameter controlling the importance of lm . 

ASYMMETRIC LEARNING METHOD 
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• Datasets 

• We conduct evaluations on two large-scale datasets: GenImage and DRCT-2M 

• GenImage comprises 2,681,167 images, segregated into 1,331,167 real images from ImageNet and 1,350,000 fake 
images generated from eight generative model.

• DRCT-2M consists of two parts: 1,920,000 images generated by various diffusion-based generative models and the 
real images from MSCOCO 

• Experimental settings

• We compared our method with several state-of-the-art image generation detection approaches. All experimental 
setups followed the guidelines established by the GenImage and DRCT-2M benchmarks. Each trained model was 
then evaluated on all eight test subsets. 

• We conducted generalizability comparisons across generators on GenImage and DRCT-2M, respectively.

• We conducted cross-dataset experiments following DRCT 

EXPERIMENTAL SETUP



• 1 Performance in GenImage
• In the scenario where DRCT DR was not applied, our method outperformed the state-of-the-art by 6.5% in average 

accuracy (ACC). 

• When integrated with DRCT DR, our method shown an additional gain, outperforming DRCT by 2.4% in average ACC. 

Accuracy (ACC, %) comparisons on GenImage test subsets. Eight models are trained on eight generators respectively. 
All the eight models are tested on the specified test subsets, and averaging the accuracy scores yields the final results

EXPERIMENTAL RESULTS



• 2 Generalizability Across Generators 

• Comparison on GenImage. Our method experienced less performance degradation across subsets with different 
generators, achieving an overall average ACC improvement from 79.1% to 85.6% 

• Comparison on DRCT-2M. Our method is robust in previously unseen diffusion models, such as SDXL, SDXL-Turbo, 
and LCM-SDXL especially, results in an overall improvement in average accuracy from 88.0% to 90.5%. 

Results of cross-validation on GenImage. We train eight models on eight subsets respectively, each 
corresponding to a different generator.

EXPERIMENTAL RESULTS

Accuracy (ACC, %) comparisons on DRCT-2M. All methods are only trained on SDv1.4 and evaluated on different test 
subsets on DRCT-2M.



• 2 Generalizability Across more Generators 

• Comparison on UniversalFakeDetect dataset. DEUA achieved competitive or even superior performance compared 
to existing unified detectors when trained on diffusion models 

• Comparison on novel generative paradigms, including diffusion transformers and autoregressive models. DEUA 
consistently maintains high detection accuracy on these emerging architectures, further confirming its adaptability 
and effectiveness 

ACC comparisons on the UniversalFakeDetect Dataset. Results of NPR, FatFormer and C2P-CLIP trained on ProGAN are 
from paper C2P-CLIP. Results of NPR and DRCT trained on GenImage SDv1.4 are obtained using their official checkpoints. 

EXPERIMENTAL RESULTS

ACC comparison on new generators. SDv3, sdv3.5 and JanusPRO are collected following GenImage. Results of NPR, 
FatFormer and DRCT are obtained using their official checkpoints 



• 3 Generalizability Across Datasets 

• Our method demonstrated stronger generalization, with smaller declines in both ACC and AP metrics under identical 
cross-dataset conditions, which offers improved robustness across varying image content.

• Methods based on diffusion reconstruction errors, such as DIRE and LaRE2 , encountered substantial challenges in 
maintaining performance across different datasets. 

• Additionally, despite its diffusion focus and orthogonality to unified schemes, DEUA stays competitive and is an 
effective module in larger frameworks 

Accuracy (ACC, %) / average precision (AP, %) comparisons of generalizability across datasets. All methods are trained on DRCT-
2M/SDv1.4 using SDv1 as the diffusion reconstruction model and evaluated on different testing subsets of GenImage. 

EXPERIMENTAL RESULTS



• 4 Ablation Experiments

• Each individual element provides an independent performance improvement.

• Influence of Diffusion Epistemic Uncertainty

• Integrating diffusion epistemic uncertainty into our model led to the most substantial improvement of 14.2%/8.0% 
ACC/AP compared to the baseline 

• Influence of Asymmetric Learning 

• led to substantial performance gains on the Big- GAN subset, achieving increases of 22.0% in ACC and 17.6% in AP 
over the baseline 

Ablative study results on GenImage test subsets 

EXPERIMENTAL RESULTS
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• In this work, we propose a novel framework for detecting diffusion-generated images with DEUA, Diffusion 
Epistemic Uncertainty and Asymmetric Learning method

• We observe that recent approaches relying on diffusion reconstruction error as a feature exhibit limited 
generalizability due to the influence of aleatoric uncertainty and introduce a new feature, diffusion epistemic 
uncertainty, which quantifies the deviation of an image from the manifold of diffusion-generated images. And 
Asymmetric Learning further boosts generalization.

• Experimental results demonstrate that our method achieves state-of-the- art generalizability across a 
variety of generation methods and datasets. 

CONCLUSION
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