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Overview
Background:
Achieve state estimation and landmark extraction in harsh conditions.
Traditional methods typically rely on post-processed radar point clouds,
which are plagued by three issues:
⋄ The inherent sparsity of radar point clouds from onboard processor
⋄ ‘Ghost points’ from multi-path effects, speckle and saturation noise
⋄ Low-angle resolution from a limited number of antennas
Self-Supervised State Estimator (S3E) employs more richly informa-
tive radar signal spectra to bypass sparse points and explores comple-
mentary benefits from exteroceptive radar and proprioceptive inertial
sensor to achieve accurate localization through three key innovations:
§ A novel self-supervised state estimator is proposed, which capitalizes

on the complementary perceptual capabilities of RIS to achieve
precise state estimation.

§ A novel Rotation-based cross-fusion is conceived to effectively pre-
serve motion-consistent features and enhance the spatial structure
across adjacent spectra.

§ The closed-loop velocity alignment and angular alignment are ex-
plored to render self-supervised learning feasible according to the
spatial and Doppler domains.
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Experiments
Data Collection Platform: Quality Assessment of Landmark Extractor:

Camera

IMU (3DM-GX5)

Radar(AWR1843)

Embedded Processor
(Intel Celeron J4125)

LiDAR (Livox Hap)
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Error Distribution and Confidence Assessment:
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Localization Performance Results: Contact:

Radar-based
Localization Methods

indoor seq0 indoor seq1 indoor seq2 indoor seq3 outdoor seq0 outdoor seq1 outdoor seq2

Trans. ↓ Rot. ↓ Trans. ↓ Rot. ↓ Trans. ↓ Rot. ↓ Trans. Rot. ↓ Trans. ↓ Rot. ↓ Trans. ↓ Rot. ↓ Trans. ↓ Rot.↓

EKF-RIO - - 5.32 6.08 4.65 5.61 5.68 2.16 6.19 5.38 6.90 11.3 9.73 19.1
PG-RIO - - 2.61 2.99 7.67 14.7 5.58 5.26 3.94 3.99 2.31 9.49 2.74 15.8
4D-RIO - - 5.62 2.56 8.37 4.69 5.91 4.33 4.97 3.01 2.55 12.1 2.48 18.2
Milliego 9.14 2.23 2.32 1.91 2.02 5.92 4.46 5.01 2.13 2.45 2.84 7.89 3.17 11.0

S3E (Ours) 5.69 2.07 2.45 2.21 2.16 3.83 3.90 2.53 2.33 2.11 2.82 4.28 2.34 11.3
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