

GDKVM: Echocardiography Video Segmentation via Spatiotemporal Key-Value Memory with Gated Delta Rule

Rui Wang¹ Yimu Sun¹ Jingxing Guo¹ Huisi Wu^{1*} Jing Qin²

¹College of Computer Science and Software Engineering, Shenzhen University

²Centre for Smart Health, School of Nursing, The Hong Kong Polytechnic University

Contents

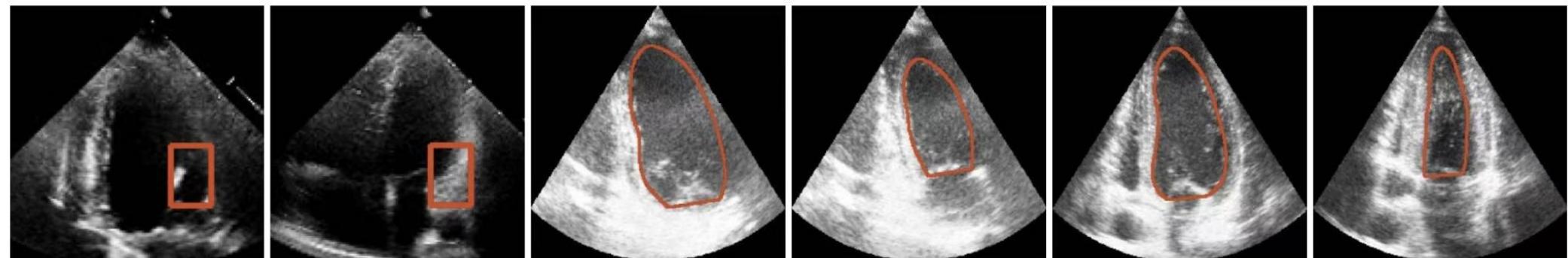
01 | Problem Setting

02 | Method

03 | Experiments

04 | Discussion

Medical


- (a) Speckle Noise, (b) Blurred Contours, and (c-f) Pronounced Variations in the Target's Morphology Across the Cardiac Cycle

Video

- (a) Extended Temporal Contexts, (b) Efficiency–Accuracy Trade-off in Recall, (c) Computational Burden

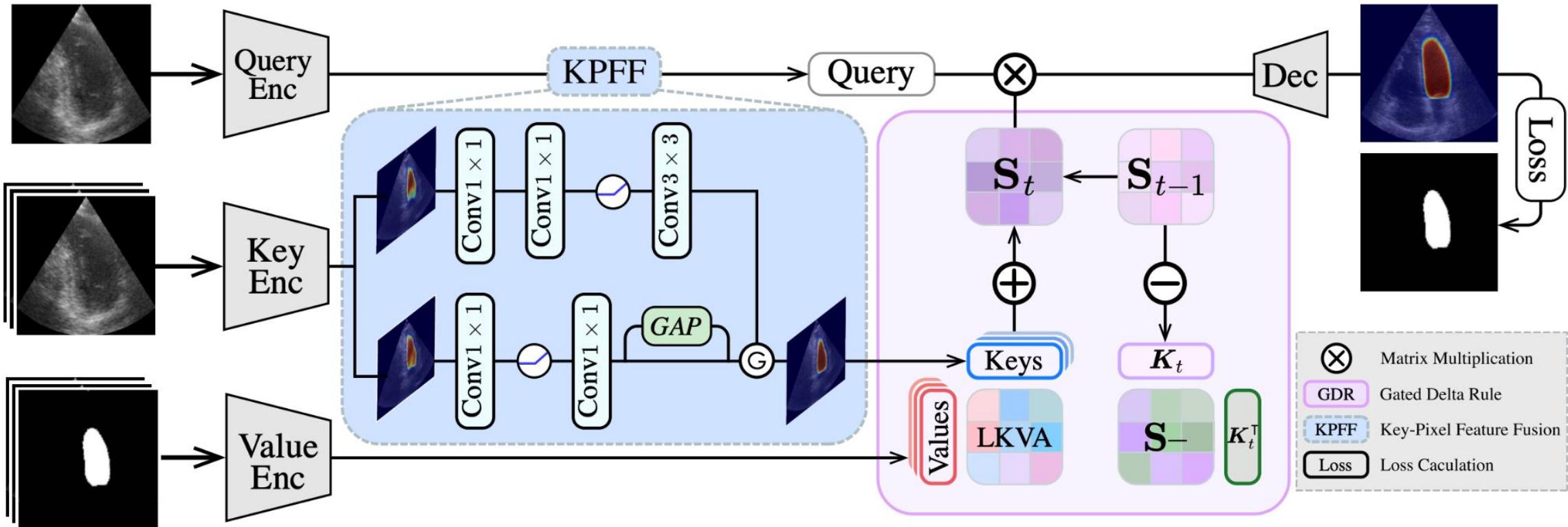
Task

- Clinical Simulation Setting — Absence of Ground Truth at Inference; Training via Boundary-Frame Prediction and Loss Computation

(a)

(b)

(c)


(d)

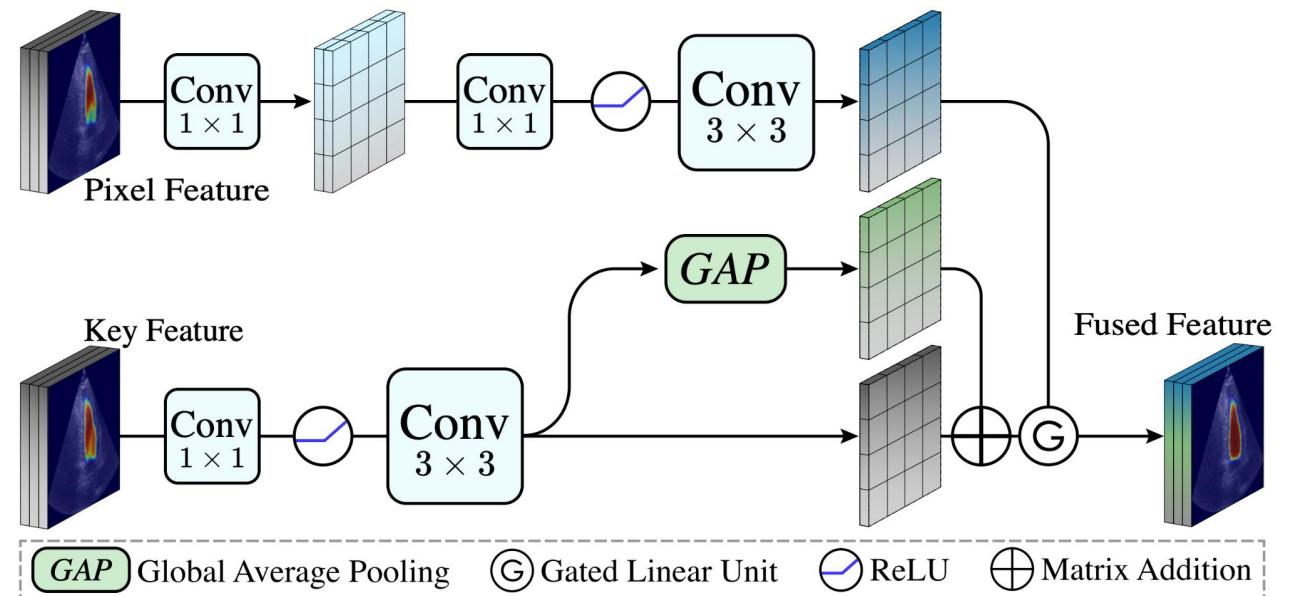
(e)

(f)

Method

- Overview

Method

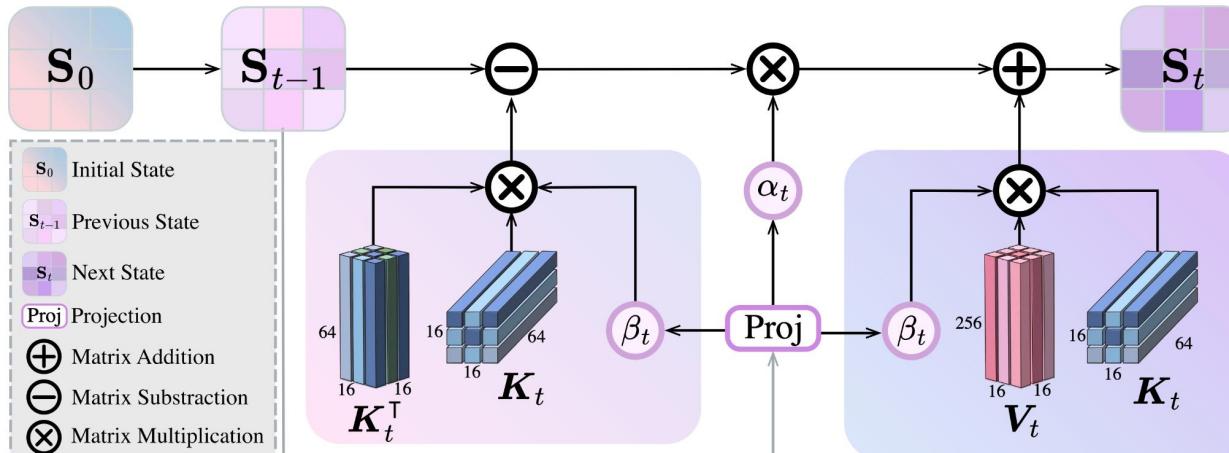

- Linear Key-Value Association

$$\mathbf{O}_t = \sum_{i=1}^t \frac{\exp(\mathbf{K}_i^\top \mathbf{Q}_t)}{\sum_{j=1}^t \exp(\mathbf{K}_j^\top \mathbf{Q}_t)} \mathbf{V}_i, \quad (1)$$

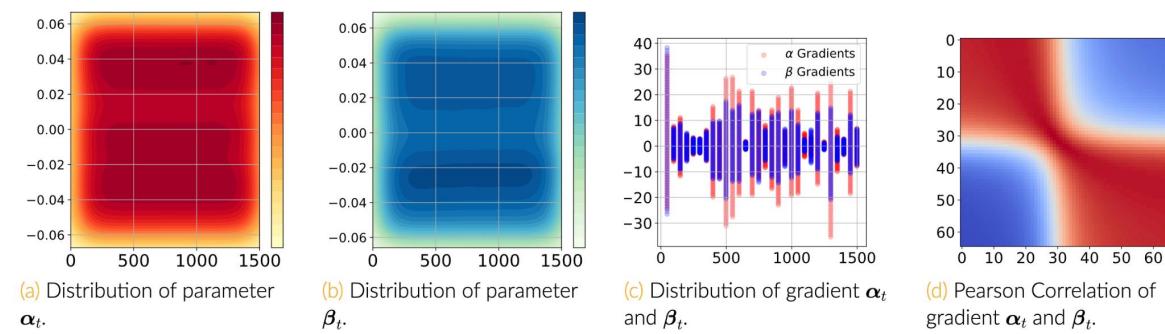
$$\begin{aligned} \mathbf{O}_t &= \sum_{i=1}^t \frac{\phi(\mathbf{K}_i)^\top \phi(\mathbf{Q}_t)}{\sum_{j=1}^t \phi(\mathbf{K}_j)^\top \phi(\mathbf{Q}_t)} \mathbf{V}_i \\ &= \frac{(\sum_{i=1}^t \mathbf{V}_i \phi(\mathbf{K}_i)^\top) \phi(\mathbf{Q}_t)}{(\sum_{j=1}^t \phi(\mathbf{K}_j)^\top) \phi(\mathbf{Q}_t)} \\ &= \frac{\mathbf{S}_t \phi(\mathbf{Q}_t)}{\mathbf{Z}_t^\top \phi(\mathbf{Q}_t)}, \end{aligned} \quad (2)$$

$$\begin{aligned} \mathbf{S}_t &= \mathbf{S}_{t-1} + \mathbf{V}_t \mathbf{K}_t^\top \in \mathbb{R}^{C_v \times C_k}, \\ \mathbf{O}_t &= \mathbf{S}_t \mathbf{K}_t \in \mathbb{R}^{HW \times C_v}. \end{aligned} \quad (3)$$

- Key-Pixel Feature Fusion

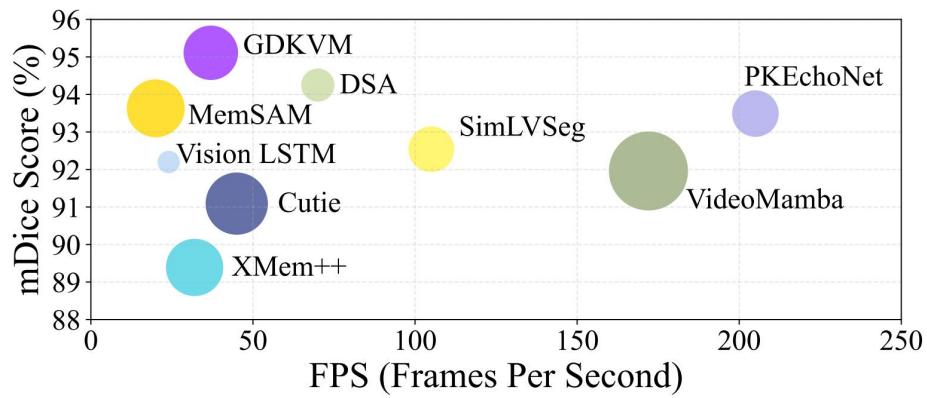


Method

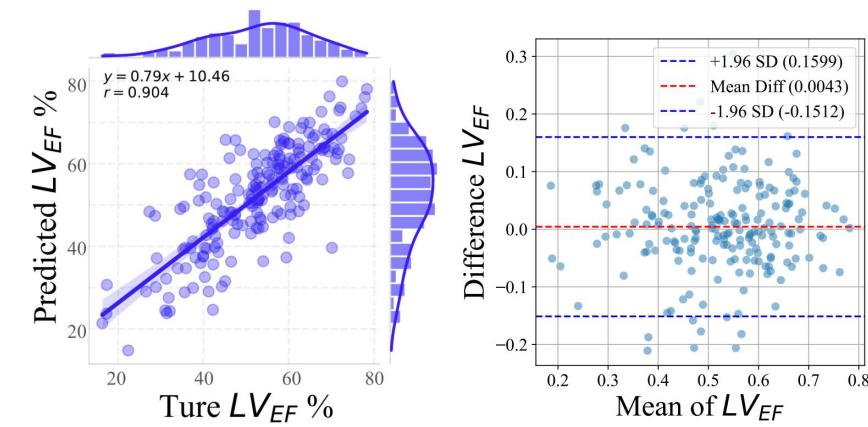

- Gated Delta Rule

$$\begin{aligned}
 \mathbf{S}_t &= \mathbf{S}_{t-1} \\
 &\quad - \underbrace{(\mathbf{S}_{t-1} \mathbf{K}_t)}_{\mathbf{V}_t^{\text{old}}} \mathbf{K}_t^\top + \underbrace{(\beta_t \mathbf{V}_t + (\mathbf{I} - \beta_t) \mathbf{S}_{t-1} \mathbf{K}_t)}_{\mathbf{V}_t^{\text{new}}} \mathbf{K}_t^\top \\
 &= \mathbf{S}_{t-1} (\mathbf{I} - \beta_t \mathbf{K}_t \mathbf{K}_t^\top) + \beta_t \mathbf{V}_t \mathbf{K}_t^\top, \tag{4}
 \end{aligned}$$

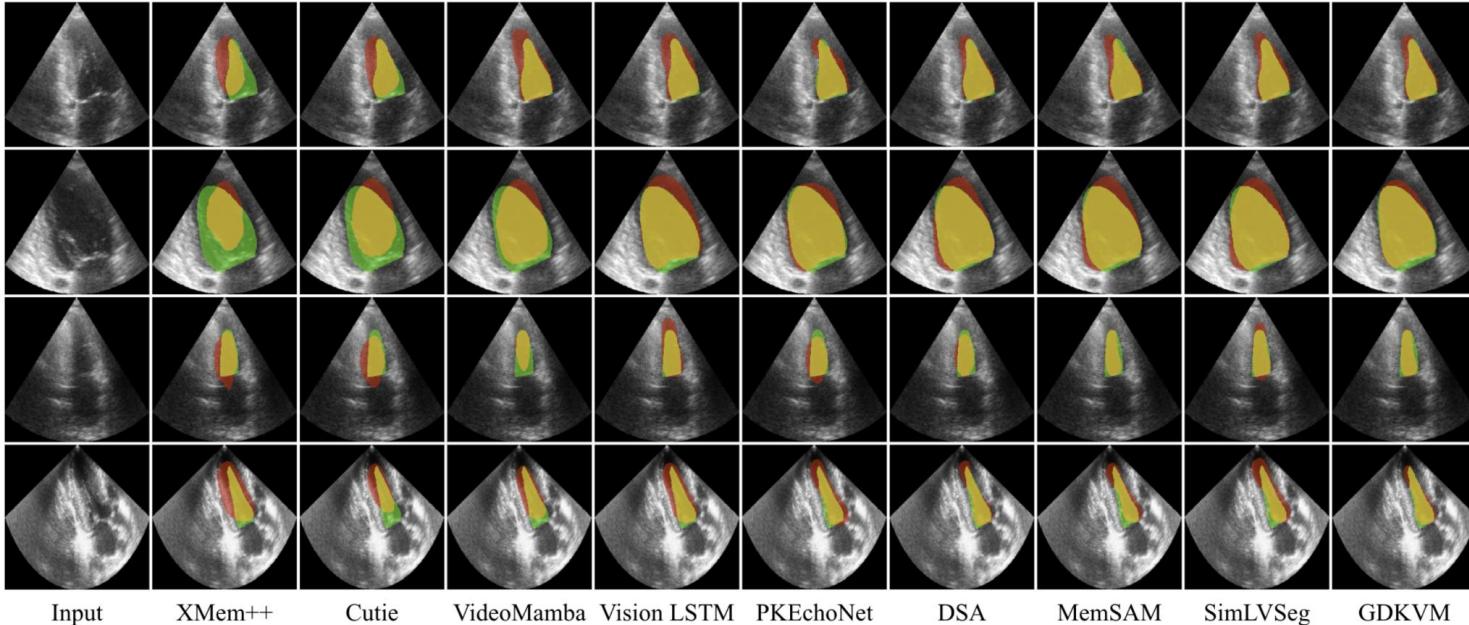
$$\mathbf{S}_t = \mathbf{S}_{t-1} (\alpha_t (\mathbf{I} - \beta_t \mathbf{K}_t \mathbf{K}_t^\top)) + \beta_t \mathbf{V}_t \mathbf{K}_t^\top. \tag{5}$$

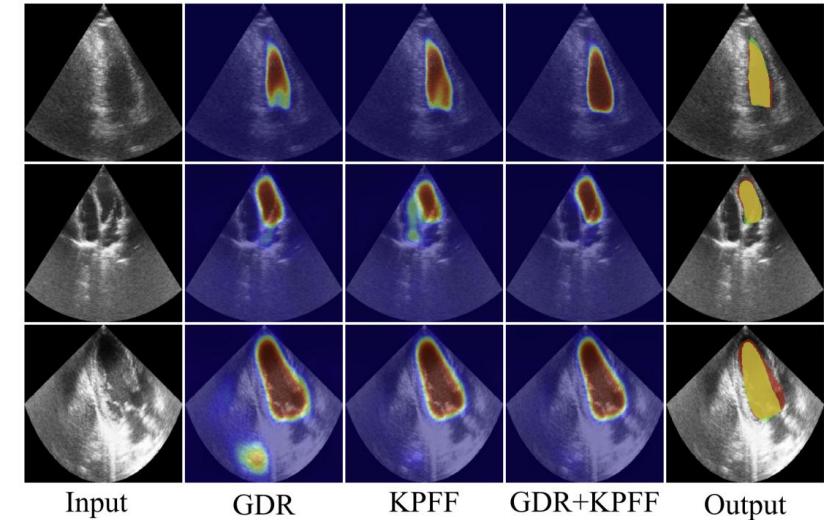


Strategy	Recurrence Equation	mDice	Inf. Time
Baseline	$\mathbf{S}_t = \mathbf{S}_{t-1} + \mathbf{V}_t \mathbf{K}_t^\top$	93.30	151.61 ms
Sanity Check	$\mathbf{S}_t = \mathbf{S}_{t-1} - (\mathbf{S}_{t-1} \mathbf{K}_t) \mathbf{K}_t^\top + \mathbf{V}_t \mathbf{K}_t^\top$	74.68	155.09 ms
w/o α_t	$\mathbf{S}_t = \mathbf{S}_{t-1} (\mathbf{I} - \beta_t \mathbf{K}_t \mathbf{K}_t^\top) + \beta_t \mathbf{V}_t \mathbf{K}_t^\top$	94.57	158.77 ms
w/o β_t	$\mathbf{S}_t = \alpha_t \mathbf{S}_{t-1} + \mathbf{V}_t \mathbf{K}_t^\top$	94.26	156.90 ms
GDR	$\mathbf{S}_t = \mathbf{S}_{t-1} (\alpha_t (\mathbf{I} - \beta_t \mathbf{K}_t \mathbf{K}_t^\top)) + \beta_t \mathbf{V}_t \mathbf{K}_t^\top$	95.11	160.62 ms



Experiments


Method	Venue & Year	CAMUS				EchoNet-Dynamic			
		mDice	mIoU	HD	ASD	mDice	mIoU	HD	ASD
XMem++ [3]	ICCV'23	89.38	85.81	4.03	4.87	87.51	83.57	3.14	2.69
Cutie [7]	CVPR'24	91.09	87.97	3.89	3.74	88.96	85.63	2.89	2.24
VideoMamba [19]	ECCV'24	91.96	89.04	3.48	3.31	90.22	87.03	2.79	2.05
Vision LSTM [2]	ICLR'25	92.14	89.11	3.79	3.39	90.24	89.14	2.65	1.69
PKEchoNet [40]	AAAI'23	93.49	90.95	3.42	2.93	92.60	89.89	2.53	1.48
DSA [22]	TMI'24	94.25	91.80	3.27	2.37	92.91	90.26	2.46	1.44
MemSAM [10]	CVPR'24	93.63	90.97	3.47	2.60	92.71	89.90	2.56	1.51
SimLVSeg [26]	UMB'24	92.54	89.71	3.65	3.12	91.91	89.08	2.65	1.65
GDKVM	-	95.11	92.97	3.05	1.98	93.46	90.86	2.38	1.36


Method	CAMUS	
	corr	bias \pm std (%)
XMem++ [3]	0.746	1.70 \pm 21.9
Cutie [7]	0.787	1.67 \pm 21.7
VideoMamba [19]	0.780	-4.49 \pm 19.4
Vision LSTM [2]	0.806	-0.31 \pm 18.8
PKEchoNet [40]	0.862	-1.53 \pm 16.4
DSA [22]	0.891	0.86 \pm 13.4
MemSAM [10]	0.878	-0.89 \pm 12.3
SimLVSeg [26]	0.895	1.83 \pm 13.8
GDKVM	0.904	-0.19 \pm 11.3

Experiments

LKVA	GDR	KPFF	mDice	mIoU	HD	ASD
✓			93.10	90.46	3.65	2.85
✓	✓		94.49	92.11	3.21	2.19
✓		✓	93.30	90.78	3.55	2.74
✓	✓	✓	95.11	92.97	3.05	1.98

- **Generality:** Extend to broader ultrasound datasets.
- **Harder video tasks:** Tackle longer sequences, complex rhythms, and difficult cases.
- **Hardware-aware:** Optimize the matrix state for parallel acceleration.

Thanks!