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Problem Setting

Medical

* (a) Speckle Noise, (b) Blurred Contours, and (c-f) Pronounced Variations in the Target’s Morphology
Across the Cardiac Cycle

Video

- (a) Extended Temporal Contexts, (b) Efficiency—Accuracy Trade-off in Recall, (c) Computational Burden

Task

- Clinical Simulation Setting — Absence of Ground Truth at Inference; Training via Boundary-Frame

Prediction and Loss Computation




Method

Overview
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Method

- Linear Key-Value Association - Key-Pixel Feature Fusion
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Method

- Gated Delta Rule
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Experiments

Method Venue & Year CAMUS EchoNet-Dynamic

mDice mloU HD ASD mDice mloU HD ASD

XMem++ [3] ICCV’23 89.38 85.81 4.03 4.87 87.51 83,57 314 2.69

Cutie [7] CVPR’24 91.09 8797 3.89 3.74 88.96 85.63 289 224

VideoMamba [19] ECCV’24 91.96 89.04 348 3.31 90.22 87.03 279 2.05

Vision LSTM [2] ICLR’25 92.14 89.11 3.79 3.39 90.24 89.14 2.65 1.69

PKEchoNet [40] AAAT’23 9349 9095 342 293 92.60 89.89 253 148

DSA [22] ™I 24 9425 91.80 3.27 237 9291 9026 246 1.44

MemSAM [10] CVPR’24 93.63 90.97 347 2.60 92771 8990 256 1.51

SimLVSeg [26] UMB’24 92.54 89.71 3.65 3.12 9191 89.08 265 1.65

GDKVM - 95.11 9297 3.05 1.98 9346 90.86 238 1.36
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Experiments

LKVA GDR KPFF | mDice @ mloU HD ASD
v 93.10 9046 365 2.85
v v 94.49 92.11 321 2.19
v v 93.30 90.78 355 274
v v v 95.11 92.97 305 198

Input XMem++ Cutie VideoMamba Vision LSTM PKEchoNet DSA MemSAM  SimLVSeg GDKVM

Input GDR KPFF  GDR+KPFF  Output



Discussion

* Generality: Extend to broader ultrasound datasets.
* Harder video tasks: Tackle longer sequences, complex rhythms, and
difficult cases.

 Hardware-aware: Optimize the matrix state for parallel acceleration.
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