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[1] Michael Fischer, and Tobias Ritschel. "Plateau-reduced differentiable path tracing." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2023.



Key idea

L(x,wy; 0 /f Wi, Wo ) L(y, wi; @) (w; Zdwi

R(w ;0)

k* L(x,wo; 0 / / R(wyi; 0 — 17)d7Tdw;

Dk *x L(x,w,;0) = D// R(wyi; 0 — 7)drdw;



Key idea
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Gradient case
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Hessian case
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HVP case

D€ k(T — ev) — D k(T + V)

pHVP k(T) = 5

[2] Pearlmutter, Barak A.. “Fast Exact Multiplication by the Hessian.” Neural Computation 6 (1994): 147-160.



Aggregate sampling

Convolve with ..
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Conjugate gradient
* Works with Hessian ve



Results

Ours Non-smooth Ground truth



Results

Ours First order Ground truth
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Conclusion & limitations

* Unbiased estimator for second order gradients
* With conjugate gradient optimizer

* Smooth out plateaus

* Works with black box functions



Conclusion & limitations

e Variance—cost trade-off
* Full Hessians scale poorly in very high-D

* Needs PSD safeguards (Hessian modification/trust region)
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Stochastic gradient estimation for
higher-order differentiable rendering
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