
OneGT: One-Shot Geometry-Texture Neural Rendering for Head Avatars

Jinshu Chen, Bingchuan Li†, Fan Zhang, Songtao Zhao, Qian He

Intelligent Creation Team, ByteDance

{chenjinshu, libingchuan, noodles, zhaosongtao.0815, heqian}@bytedance.com

Summary

➢ Existing solutions for creating high-fidelity digital head avatars

encounter various obstacles.

➢ Traditional rendering tools offer realistic results, while heavily

requiring expert skills; Neural rendering methods are more

efficient but often compromise between the generated fidelity

and flexibility.

➢ We present OneGT that adheres to the frameworks of the

rendering tools, while restructuring individual stages of the

rendering pipeline through neural networks.

➢ Specifically, OneGT contains a skeleton-anchoring stage and a

texture-rendering stage, in which well-designed Transformers

learn the geometric transformations and the proposed reference-

perceptible DiT renders the textures respectively.

➢ Our framework learns geometric consistency from the

innovatively introduced synthetic data, thus achieving superior

performance while requiring only 10%-30% of the real-world

data typically used by competitive methods.

➢ Experimental results demonstrate that OneGT achieves high

fidelity in producing portrait avatars, meanwhile maintaining

the flexibility of editing.

Highlights

➢ OneGT, a one-shot neural rendering framework architected

according to the pipeline of the traditional rendering

software.

➢ A geometry-texture decoupled pipeline: (1) the prior

skeleton-anchoring stage contains two well-designed

Transformers to comprehend the geometry; (2) the posterior

texture-rendering stage is built upon the proposed

reference-perceptible DiT.

➢ Instead of learning from massive real-world data, OneGT

manages to gain geometric consistency from the

innovatively introduced synthetic data, mitigating the

required amount of the real-world datasets to 10%-30%.

Framework

➢ OneGT contains two distinct phases: a preliminary

skeleton-anchoring stage and a subsequent texture-

rendering stage.

➢ The former stage, skeleton anchoring, handles the

generation of precise skeletal structures based on

provided control conditions, e.g., camera parameters.

➢ For the skeleton anchoring, we adopt the dense

representation along with our introduced adaptive

strategies as the skeleton, which reaches a precise balance

between the fidelity and flexibility.

➢ The skeleton is anchored through two specially designed

Transformers which manage the rigid and non-rigid

transformations respectively.

Framework

➢ OneGT contains two distinct phases: a preliminary

skeleton-anchoring stage and a subsequent texture-

rendering stage.

➢ For the texture rendering, we propose our reference-

perceptible DiT backbone, which contains a main branch

taking in the skeleton information and a parallel branch

handling the provided reference texture.

➢ The texture information and the structural geometry get

blended deeply through the designed "mix-calculate-split''

attention modules, ensuring refined final results.

Dataset

➢ We incorporate synthetic data into our pipeline, which has

high fidelity, cost-effective acquisition, and high

customizability.

➢ Unlike existing frameworks that attempt to

simultaneously learn geometric structures and texture

details from massive real-world datasets, our architecture

moves the part of geometric consistency entirely to

synthetic data.

➢ This approach enables our framework to achieve superior

performance while requiring only 10%-30% of the real-

world data consumed by the competitive peers.

Rendering Data

➢ We use Houdini to manufacture the rendering data.

➢ Specifically, over 200 different preset head models, skin

textures, accessories and background assets are stored and

randomly combined.

➢ we produce about 50,000 groups of the data, each of

which contains 20 images with the same identity, posture,

expression, scene, but different camera perspectives.

➢ 𝐶𝑟𝑖𝑔𝑖𝑑 is trained completely on this mentioned data.

➢ Such rendering data also partially supports the training of

the texture rendering stage.

Dataset

➢ We incorporate synthetic data into our pipeline, which has

high fidelity, cost-effective acquisition, and high

customizability.

➢ Unlike existing frameworks that attempt to

simultaneously learn geometric structures and texture

details from massive real-world datasets, our architecture

moves the part of geometric consistency entirely to

synthetic data.

➢ This approach enables our framework to achieve superior

performance while requiring only 10%-30% of the real-

world data consumed by the competitive peers.

Rendering Data

➢ We use Houdini to manufacture the rendering data.

➢ Specifically, over 200 different preset head models, skin

textures, accessories and background assets are stored and

randomly combined.

➢ we render 0.5 million triplet groups, applying the

translation coefficients of 𝐼𝑑 directly to 𝐼𝑠 to obtain 𝐼𝑠→𝑑
𝑒𝑥𝑝

.

Note that 𝐼𝑠 differs from 𝐼𝑠→𝑑
𝑒𝑥𝑝

 only in expressions, but

rarely has similar attributes compared to 𝐼𝑑 .

➢ Such triplet data constructs the whole training set of

𝐶𝑛𝑜𝑛−𝑟𝑖𝑔𝑖𝑑.

Dataset

➢ We incorporate synthetic data into our pipeline, which has

high fidelity, cost-effective acquisition, and high

customizability.

➢ Unlike existing frameworks that attempt to

simultaneously learn geometric structures and texture

details from massive real-world datasets, our architecture

moves the part of geometric consistency entirely to

synthetic data.

➢ This approach enables our framework to achieve superior

performance while requiring only 10%-30% of the real-

world data consumed by the competitive peers.

Read-world Data

➢ We construct the real-world domain training data from

VFHQ.

➢ Based on the raw data, we roughly screen about 1 million

single-frame data according to the principles of no facial

occlusion and static background..

➢ Generally, the real-world domain data only participates in

the training of texture rendering, leaving the accountability

for learning the geometry to the rendering data..

Results

Results

Results

Thanks for watching!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

