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Summary
» Existing solutions for creating high-fidelity digital head avatars

encounter various obstacles.
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performance while requiring only 10%-30% of the real-world

data typically used by competitive methods.

» Experimental results demonstrate that OneGT achieves high
fidelity in producing portrait avatars, meanwhile maintaining

the flexibility of editing.
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Highlights
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required amount of the real-world datasets to 10%-30%.
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Framework
» OneGT contains two distinct phases: a preliminary
skeleton-anchoring stage and a subsequent texture-

rendering stage.

» The former stage, skeleton anchoring, handles the
generation of precise skeletal structures based on

provided control conditions, €.g., camera parameters.

» For the skeleton anchoring, we adopt the dense
representation along with our introduced adaptive
strategies as the skeleton, which reaches a precise balance

between the fidelity and flexibility.

» The skeleton 1s anchored through two specially designed
Transtormers which manage the rigid and non-rigid

transformations respectively.
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Framework
» OneGT contains two distinct phases: a preliminary
skeleton-anchoring stage and a subsequent texture-

rendering stage.

» For the texture rendering, we propose our reference-
perceptible D1T backbone, which contains a main branch
taking 1n the skeleton information and a parallel branch

handling the provided reference texture.

» The texture information and the structural geometry get
blended deeply through the designed "mix-calculate-split"

attention modules, ensuring refined final results.
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Dataset

» We incorporate synthetic data into our pipeline, which has
high fidelity, cost-effective acquisition, and high
customizability.

» Unlike existing frameworks that attempt to

simultaneously learn geometric structures and texture

details from massive real-world datasets, our architecture
moves the part of geometric consistency entirely to
synthetic data.

» This approach enables our framework to achieve superior
performance while requiring only 10%-30% of the real-

world data consumed by the competitive peers.

Rendering Data

» We use Houdini to manufacture the rendering data.

» Specifically, over 200 different preset head models, skin

textures, accessories and background assets are stored and
randomly combined.

» we produce about 50,000 groups of the data, each of
which contains 20 images with the same 1dentity, posture,

expression, scene, but different camera perspectives.
» Crigig 18 trained completely on this mentioned data.

» Such rendering data also partially supports the training of

the texture rendering stage.
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Dataset

» We incorporate synthetic data into our pipeline, which has
high fidelity, cost-effective acquisition, and high
customizability.

» Unlike existing frameworks that attempt to

simultaneously learn geometric structures and texture

details from massive real-world datasets, our architecture
moves the part of geometric consistency entirely to
synthetic data.

» This approach enables our framework to achieve superior
performance while requiring only 10%-30% of the real-

world data consumed by the competitive peers.

Rendering Data

» We use Houdini to manufacture the rendering data.

» Specifically, over 200 different preset head models, skin

textures, accessories and background assets are stored and

randomly combined.

» we render 0.5 million triplet groups, applying the
exp

translation coetficients of I; directly to /g to obtain I~ ;.

Note that I, differs from I :le only 1n expressions, but

rarcly has similar attributes compared to 1.

» Such triplet data constructs the whole training set of

Cnon—rigid-
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Dataset

» We incorporate synthetic data into our pipeline, which has
high fidelity, cost-effective acquisition, and high
customizability.

» Unlike existing frameworks that attempt to

simultaneously learn geometric structures and texture

details from massive real-world datasets, our architecture
moves the part of geometric consistency entirely to
synthetic data.

» This approach enables our framework to achieve superior
performance while requiring only 10%-30% of the real-

world data consumed by the competitive peers.

Read-world Data

» We construct the real-world domain training data from
VFHQ.

» Based on the raw data, we roughly screen about 1 million
single-frame data according to the principles of no facial
occlusion and static background..

» Generally, the real-world domain data only participates in
the training of texture rendering, leaving the accountability

for learning the geometry to the rendering data..
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Results
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Thanks for watching!
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