

SAKAK

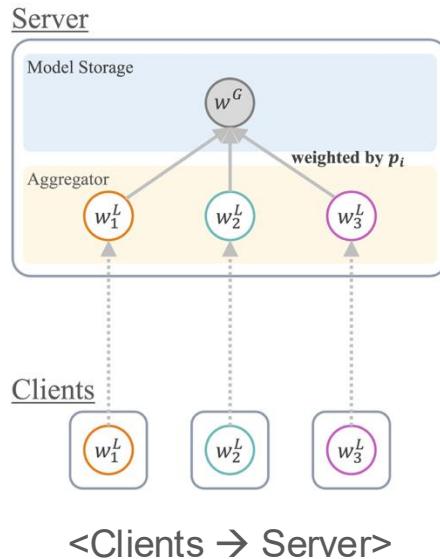
KOREA
CYBER UNIVERSITY

ICCV
OCT 19-23, 2025
HONOLULU
HAWAII

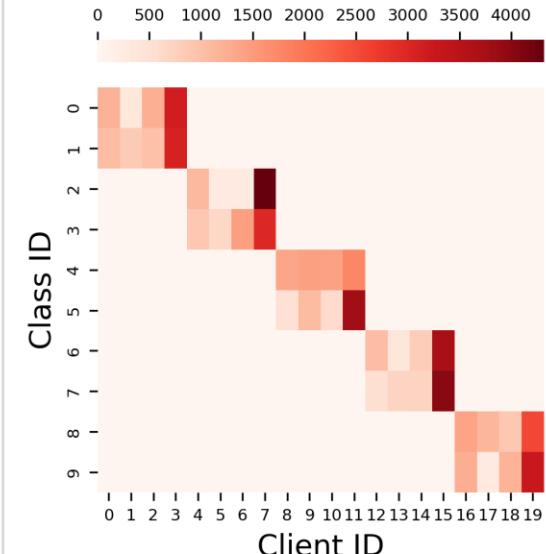
Class-Wise Federated Learning for Efficient Personalization

Gyuejeong Lee, Daeyoung Choi

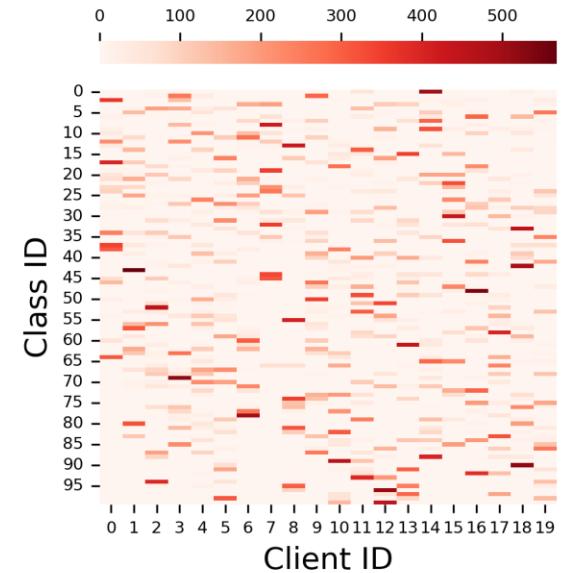
cwFedAvg | Background



A Foundational Approach of Federated Learning performs poorly with heterogeneous data distributions


- Federated learning(FL) enables distributed training without centralizing data, addressing challenges related to data costs and privacy constraints.
- With non-independent and identically distributed (non-IID) data, FedAvg suffers performance degradation due to its lack of personalization capability.

Standard Federated Learning Procedure(FedAvg)


- Federated Averaging(FedAvg) creates a single global model by aggregating local models weighted by client sample sizes.

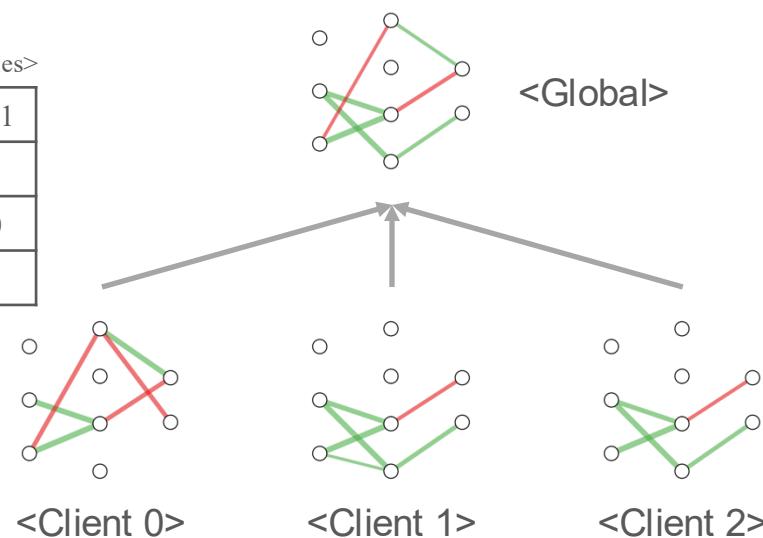
The Heatmaps of non-IID Data Examples

<CIFAR-10 Pathological Setting>

<CIFAR-100 Practical Setting(0.1)>

cwFedAvg | Motivation

Why does FedAvg Fail to Train Personalized Models? It Fails to Capture Class-Specific PATHWAYS


- Deep networks develop PATHWAYs, where a pathway represents a collection of paths (weights) connecting input to output.
- Pathways demonstrate distinct patterns across different classes based on the class proportion.

1. Class-Specific Pathway Collapse

- The learned pathways of local models show distinctive patterns.
- However, the global model cannot capture the unique patterns of each client.

<Synthetic non-IID Data Samples>

Client	Class 0	Class 1
0	2700	300
1	200	1800
2	500	500

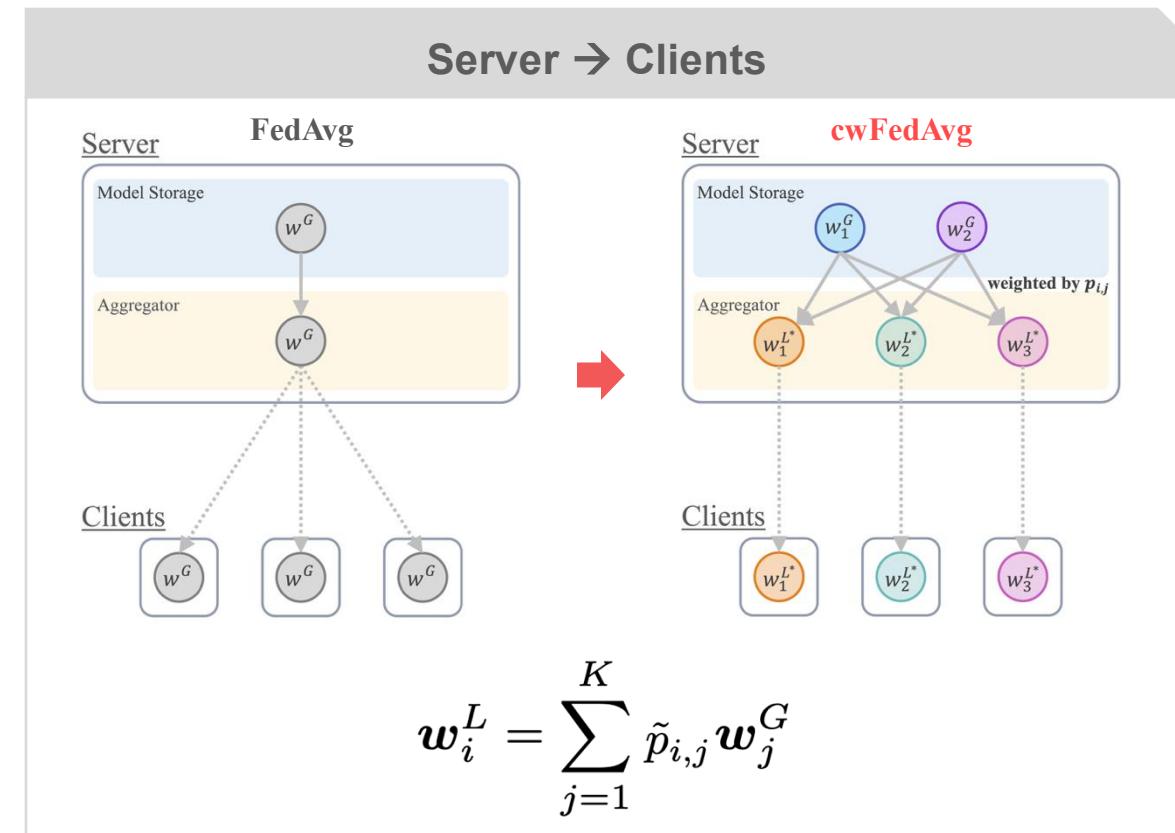
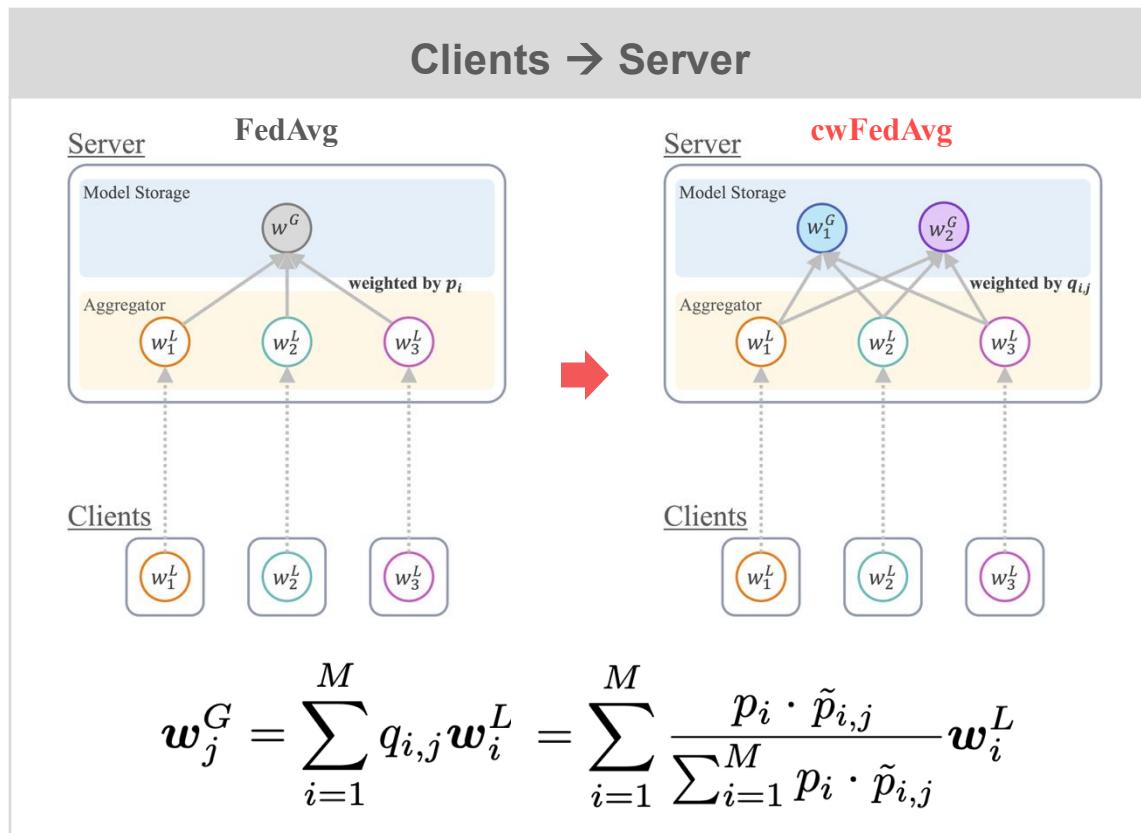
2. Correlation btw weight vector and class distribution

- Based on the correlation between the squared L_2 -norms of the gradients of weight vectors and the number of samples of clients,
- We found L_2 -norms of weight vectors of output layer correlate with the client's class distribution.

--- Theorem from [1] ---

$$\frac{\mathbb{E} \|\nabla \mathcal{L}(\mathbf{w}_{i,j})\|_2^2}{\mathbb{E} \|\nabla \mathcal{L}(\mathbf{w}_{i,k})\|_2^2} \approx \frac{n_{i,j}^2}{n_{i,k}^2}$$

$$\tilde{p}_{i,j} = \frac{\|\mathbf{w}_{i,j}\|_2}{\sum_{k=1}^K \|\mathbf{w}_{i,k}\|_2}$$



$\mathbf{w}_{i,j}$: the weight vector from penultimate layer neurons to output neuron j of client i
 $n_{i,j}$: the number of samples belonging to class j of client i
 $p_{i,j}$: the empirical class distribution of class j of client i
 $\tilde{p}_{i,j}$: the approximated class distribution of class j of client i
 K : the total number of class

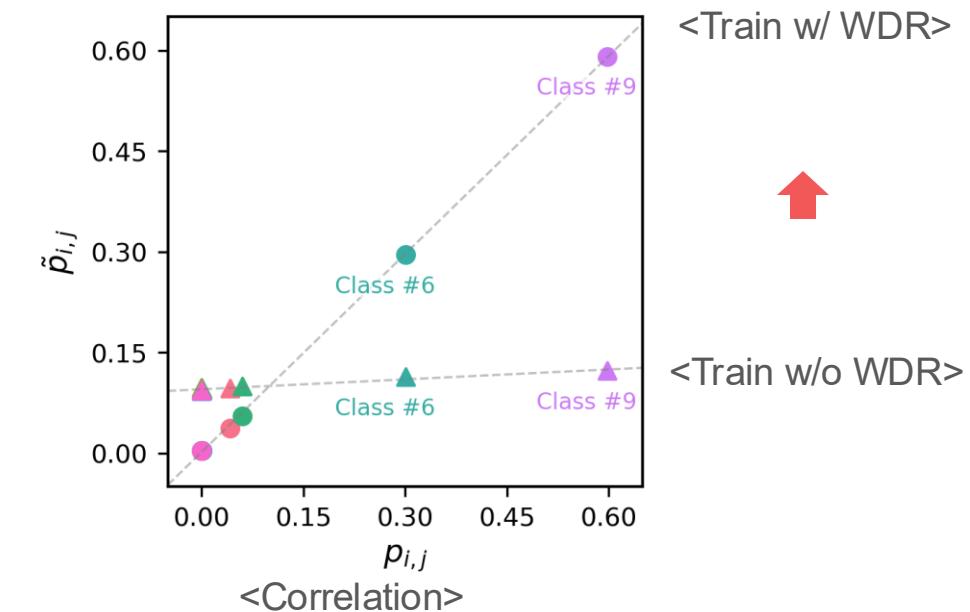
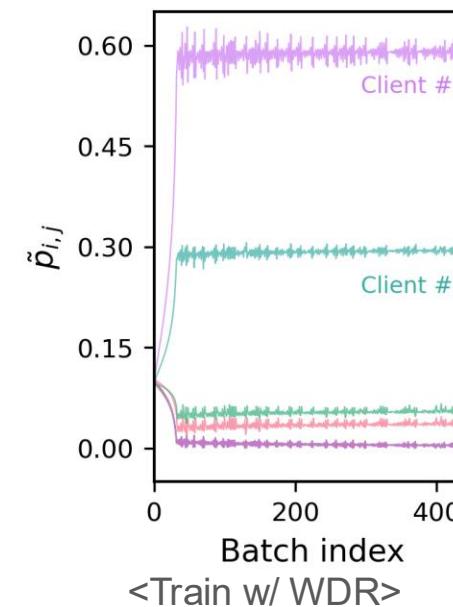
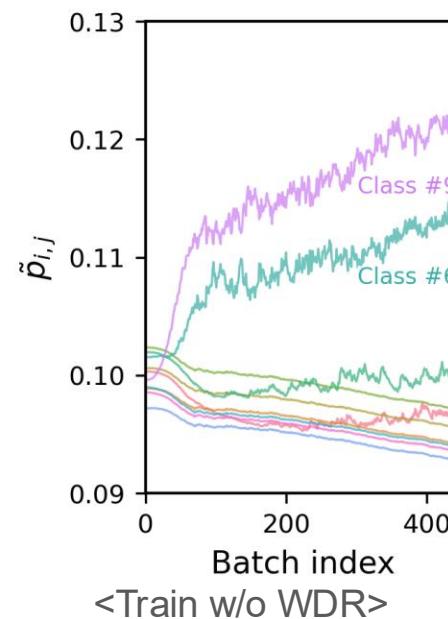
cwFedAvg | Method

Class-Wise Extension of FedAvg with Multiple Global Models and Modified Weighting Factors

- Create class-specific global models by aggregating local models weighted by their respective client and class sample proportions.
- Generate personalized local models by aggregating these class-specific global models weighted by the class distribution of each client.

cwFedAvg | Method

WDR Enhances the Correlation btw Class Distribution and Model Weights, Improving Effectiveness




Weight Distribution Regularizer(WDR)

$$\mathcal{R}_i = \|\mathbf{p}_i - \tilde{\mathbf{p}}_i\|_2$$

Total Cost Function

$$\tilde{\mathcal{L}}_i = \mathcal{L}_i + \lambda \mathcal{R}_i$$

\mathbf{p}_i : the empirical class distribution of client i
 $\tilde{\mathbf{p}}_i$: the approximated class distribution of client i
 \mathcal{L}_i : the cost function
 λ : the regularization coefficient

cwFedAvg | Experiments(Quantitative)

cwFedAvg Consistently Outperforms All Other Settings Except for CIFAR-10 Practical Setting

Table 1. Classification accuracy (%) across datasets. Tiny ImageNet* indicates experiments using ResNet-18. cwFedAvg (Output) denotes cwFedAvg selectively applied to the output layer.

Algorithm	Pathological setting			Practical setting ($\alpha = 0.1$)			
	CIFAR-10	CIFAR-100	MNIST	CIFAR-10	CIFAR-100	Tiny ImageNet	Tiny ImageNet*
FedAvg	60.68 \pm 0.84	28.22 \pm 0.32	98.70 \pm 0.04	61.94 \pm 0.56	32.44 \pm 0.42	21.35 \pm 0.12	24.71 \pm 0.15
FedProx	60.65 \pm 0.92	28.59 \pm 0.28	98.68 \pm 0.09	62.48 \pm 0.86	32.26 \pm 0.26	20.65 \pm 0.12	24.06 \pm 0.16
FedAMP	88.82 \pm 0.15	63.29 \pm 0.49	99.26 \pm 0.01	89.46\pm0.11	47.65 \pm 0.62	29.95 \pm 0.10	31.38 \pm 0.18
FedFomo	90.76 \pm 0.59	63.12 \pm 0.59	99.13 \pm 0.04	88.05 \pm 0.08	44.62 \pm 0.37	26.22 \pm 0.25	26.12 \pm 0.31
CFL	60.58 \pm 0.15	28.55 \pm 0.30	98.70 \pm 0.01	61.40 \pm 0.51	44.19 \pm 0.69	29.62 \pm 0.43	33.47 \pm 0.68
IFCA	72.84 \pm 4.80	58.98 \pm 2.38	99.10 \pm 0.06	70.12 \pm 0.13	34.86 \pm 1.02	19.93 \pm 0.59	26.68 \pm 0.16
FedNH	50.82 \pm 0.33	26.26 \pm 0.36	98.85 \pm 0.29	56.38 \pm 0.17	32.98 \pm 0.88	17.04 \pm 0.07	24.24 \pm 0.76
FedUV	88.11 \pm 0.13	62.72 \pm 0.28	99.25 \pm 0.09	88.59 \pm 0.09	46.80 \pm 0.20	28.09 \pm 0.06	25.45 \pm 0.03
cwFedAvg (Output)	91.23\pm0.04	67.50\pm0.14	99.52\pm0.03	88.65 \pm 0.19	56.29\pm0.18	41.38\pm0.12	43.51\pm0.14

cwFedAvg | Experiments(Quantitative)

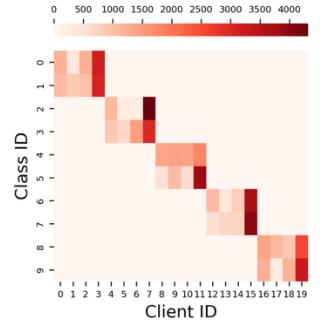
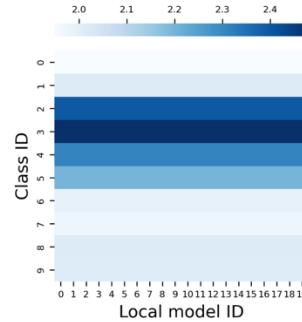
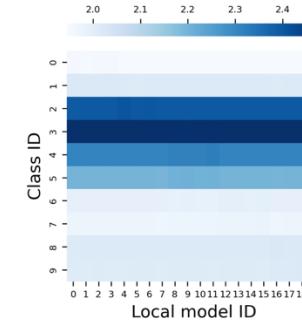
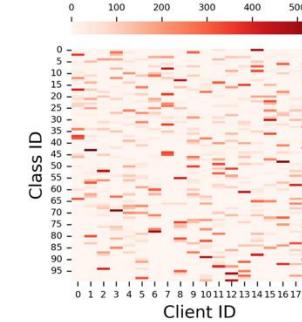

cwFedAvg outperforms under various conditions while maintaining the same communication overhead.

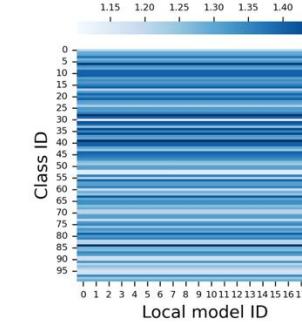
Table 2. Communication cost formulation and classification accuracy (%) across different settings for CIFAR-100. Σ denotes total model parameters, and C denotes the number of clusters. cwFedAvg (Output) denotes cwFedAvg selectively applied to the output layer.

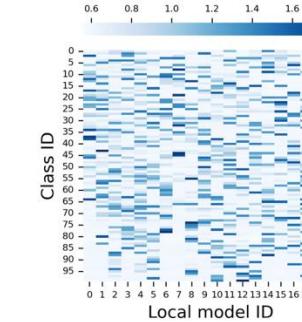

Algorithm	Comm. Cost	Number of clients		Data heterogeneity		
		50 Clients	100 Clients	$\alpha=0.01$	$\alpha=0.5$	$\alpha=1.0$
FedAvg	$2 \cdot \Sigma$	32.63 ± 0.34	32.32 ± 0.30	28.00 ± 0.92	36.18 ± 0.28	36.75 ± 0.34
FedProx	$2 \cdot \Sigma$	33.22 ± 0.20	32.64 ± 0.21	27.89 ± 0.24	35.93 ± 0.31	36.65 ± 0.39
FedAMP	$2 \cdot \Sigma$	44.97 ± 0.27	41.37 ± 0.35	73.46 ± 0.40	25.41 ± 0.14	21.23 ± 0.40
FedFomo	$(1+M) \cdot \Sigma$	42.62 ± 0.62	38.62 ± 0.08	71.30 ± 0.03	25.43 ± 0.58	18.95 ± 0.34
CFL	$2 \cdot \Sigma$	32.83 ± 0.78	32.88 ± 0.23	27.67 ± 0.17	38.32 ± 0.47	36.80 ± 0.07
IFCA	$(1+C) \cdot \Sigma$	29.17 ± 0.20	26.56 ± 0.45	53.89 ± 3.58	25.87 ± 0.57	22.27 ± 1.14
FedNH	$2 \cdot \Sigma$	33.14 ± 0.46	32.73 ± 0.24	25.48 ± 0.25	37.13 ± 0.41	20.41 ± 0.15
FedUV	$2 \cdot \Sigma$	44.30 ± 0.14	40.91 ± 0.22	72.67 ± 0.12	27.23 ± 0.25	37.41 ± 0.34
cwFedAvg (Output)	$2 \cdot \Sigma$	55.90 ± 0.35	53.54 ± 0.79	75.20 ± 0.21	40.78 ± 0.93	37.50 ± 0.10

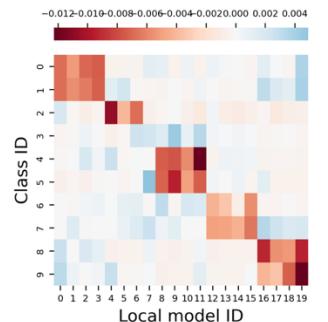
cwFedAvg | Experiments(Qualitative)


Output layer weight distribution visualization reveals how cwFedAvg achieves personalization

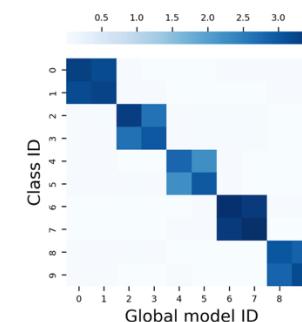

(a) Data distribution of clients

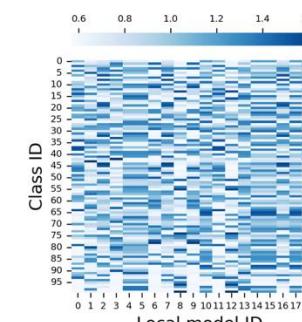

(b) Local models of FedAvg

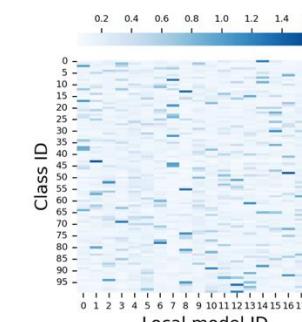

(c) Local models of fine-tuned FedAvg

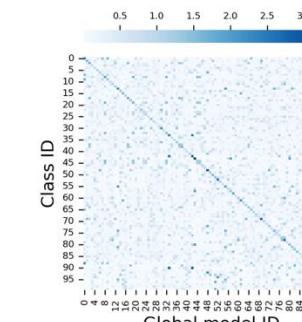

(a) Data distribution of clients

(b) Local models of FedAvg


(c) Local models of FedAMP


(d) Difference between (b) and (c)


(e) Local models of cwFedAvg w/ WDR


(f) Global models of cwFedAvg w/ WDR

(d) Local models of IFCA

(e) Local models of cwFedAvg w/ WDR

(f) Global models of cwFedAvg w/ WDR

<CIFAR-10 Pathological Setting>

<CIFAR-100 Practical Setting(0.1)>

Thank you for watching

Class-Wise Federated Learning for Efficient Personalization

Project Page: <https://github.com/regulationLee/cwFedAvg>