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cwFedAvg | Background

A Foundational Approach of Federated Learning performs poorly with heterogeneous data distributions

- Federated learning(FL) enables distributed training without centralizing data, addressing challenges related to data costs and privacy constraints.

- With non-independent and identically distributed (non-lID) data, FedAvg suffers performance degradation due to its lack of personalization capability.

Standard Federated Learning Procedure(FedAvg) The Heatmaps of non-lID Data Examples

- Federated Averaging(FedAvg) creates a single global model by
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cwFedAvg | Motivation

Why does FedAvg Fail to Train Personalized Models? It Fails to Capture Class-Specific PATHWAY's

- Deep networks develop PATHWAYs, where a pathway represents a collection of paths (weights) connecting input to output
- Pathways demonstrate distinct patterns across different classes based on the class proportion

1. Class-Specific Pathway Collapse

- The learned pathways of local models show distinctive patterns.

- However, the global model cannot capture the unique patterns of
each client.
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2. Correlation btw weight vector and class distribution

- Based on the the correlation between the squared L,-norms of the
gradients of weight vectors and the number of samples of clients,

- We found L,-norms of weight vectors of output layer correlate with
the client’s class distribution.

oo Theorem from [1]
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w;j;: the weight vector from penultimate layer neurons to output neuron j of client i
n;;: the number of samples belonging to class j of client i
pij: the empirical class distribution of class j of client i

Pij: the approximated class distribution of class j of client i
K: the total number of class



cwFedAvg | Method

Class-Wise Extension of FedAvg with Multiple Global Models and Modified Weighting Factors

- Create class-specific global models by aggregating local models weighted by their respective client and class sample proportions.

- Generate personalized local models by aggregating these class-specific global models weighted by the class distribution of each client.
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cwFedAvg | Method

WDR Enhances the Correlation btw Class Distribution and Model Weights, Improving Effectiveness

Weight Distribution Regularizer(WDR) RZ — || p?, — p?, || 9 p;i: the empirical class distribution of client i
pi: the approximated class distribution of client i
~ L;: the cost function
Total Cost Function E,& s ‘C”L —|— A R i A: the regularization coefficient
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cwFedAvg | Experiments(Quantitative)

cwFedAvg Consistently Outperforms All Other Settings Except for CIFAR-10 Practical Setting

Table 1. Classification accuracy (%) across datasets. Tiny ImageNet  indicates experiments using ResNet-18. cwFedAvg (Output) denotes
cwFedAvg selectively applied to the output layer.

Pathological setting

Practical setting (o = 0.1)

Algorithm -
CIFAR-10 CIFAR-100 MNIST CIFAR-10 CIFAR-100 Tiny ImageNet Tiny ImageNet
FedAvg 60.68+0.84 28.224+0.32 98.70+£0.04 61.941+0.56 32.44+0.42 21.35+0.12 24.71£0.15
FedProx 60.65+0.92  28.594+0.28 98.68+0.09 62.484+0.86 32.26+0.26 20.65+0.12 24.06+0.16
FedAMP 88.82+0.15 63.29+0.49 99.26+0.01 89.46+0.11 47.65+0.62 29.9540.10 31.38+0.18
FedFomo 90.76£0.59 63.12+0.59 99.13£0.04 88.05+0.08  44.62+0.37 26.22+0.25 26.12+0.31
CFL 60.58+0.15 28.554+0.30 98.70+£0.01 61.40+0.51 44.19+0.69 29.62+0.43 33.471+0.68
IFCA 72.84+4.80 58.98+2.38 99.10+0.06 70.124+0.13  34.86+1.02 19.93+0.59 26.68+0.16
FedNH 50.82+0.33  26.26+0.36 98.85+£0.29 56.38+0.17 32.98+0.88 17.04+0.07 24.241+0.76
FedUV 88.11+0.13  62.724+0.28 99.25+0.09 88.59+0.09 46.80+0.20 28.09+0.06 25.45+0.03
cwFedAvg (Output) 91.23+0.04 67.50+0.14 99.52+0.03 88.65+0.19 56.29+0.18 41.38+0.12 43.51+0.14




cwFedAvg | Experiments(Quantitative)

cwFedAvg outperforms under various conditions while maintaining the same communication overhead.

Table 2. Communication cost formulation and classification accuracy (%) across different settings for CIFAR-100. 3 denotes total model
parameters, and C denotes the number of clusters. cwFedAvg (Output) denotes cwFedAvg selectively applied to the output layer.

Algorithm Comm. Cost Number of clients Data heterogeneity

50 Clients 100 Clients a=0.01 a=0.5 a=1.0
FedAvg 2-% 32.6340.34 32.3240.30 28.00+0.92 36.18+0.28 36.7540.34
FedProx 2-% 33.2240.20 32.6440.21 27.89+0.24 35.93+0.31 36.65+0.39
FedAMP 2-% 44.974+0.27 41.3710.35 73.4610.40 25.41+0.14 21.2340.40
FedFomo (1+M) - X 42.6210.62 38.62+0.08 71.30+0.03 25.4310.58 18.9540.34
CFL 2-X 32.83+0.78 32.884+0.23 27.671+0.17 38.3240.47 36.80+0.07
IFCA (14+C) - X 29.1740.20 26.5640.45 53.89+3.58 25.87+0.57 22.27+1.14
FedNH 2-% 33.1440.46 32.734+0.24 25.484+0.25 37.134+0.41 20.41+0.15
FedUV 2-% 44.3010.14 40.914+0.22 72.67+0.12 27.2340.25 37.4140.34
cwFedAvg (Output) 2. 55.90+0.35 53.54+0.79 75.20+0.21 40.78+0.93 37.504+0.10




cwFedAvg | Experiments(Qualitative)
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Thank you for watching

Class-Wise Federated Learning for
Efficient Personalization

Project Page: https://github.com/regulationLee/cwFedAvg
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