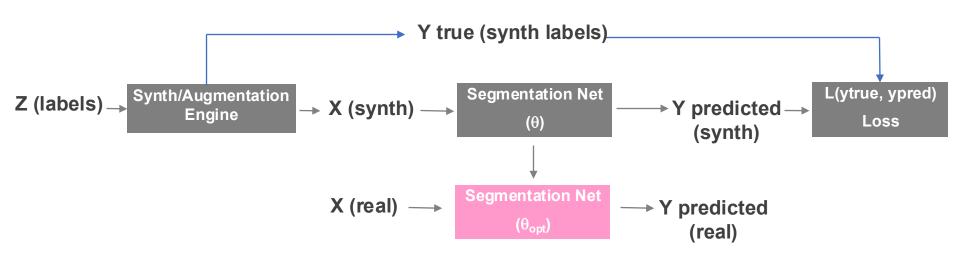


Learn2Synth: Learning Optimal Data Synthesis Using Hypergradients for Brain Image Segmentation

Xiaoling Hu

Athinoula A. Martinos Center for Biomedical Imaging


MGH/Harvard Medical School

https://huxiaoling.github.io/

October 9, 2025

SynthSeg

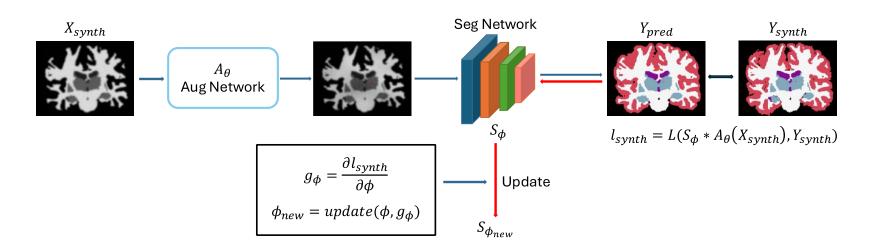
Training networks with entirely synthetic data

Learn2Synth

- Goal: improve the real world accuracy of a network trained on synthetic data
 - Bias the synthesis such that the trained network works best on real data

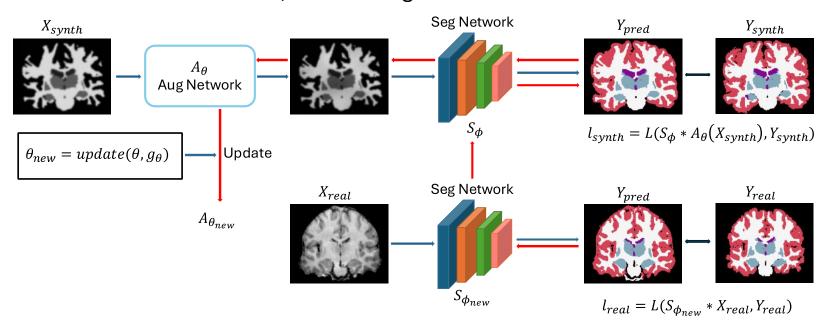
• Idea

- Augment synthetic training examples (generated under ad-hoc rules) by a trainable network
 - (Only) Augmented synthetic data used to train seg. network
- Incite aug. network to generate samples that better train the seg. network: benefit from real labeled examples
- > Don't care if the synthetic data is realistic or not

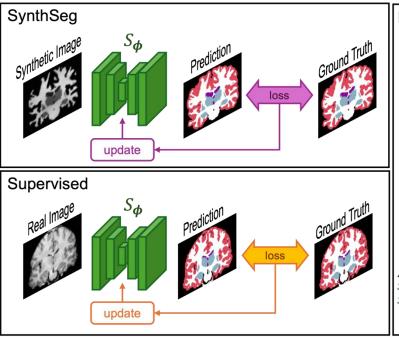

Learn2Synth

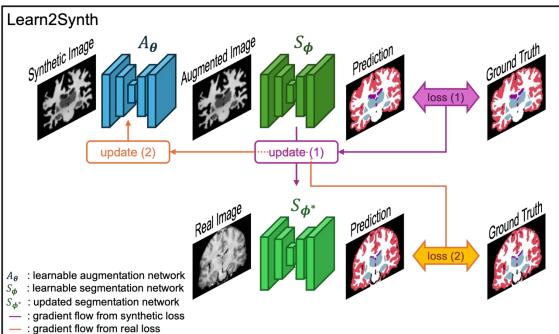
Training strategy

- Step1: freeze the aug. network and update the seg. network when running a "synthetic" training step
 - (Only) Augmented synthetic data used to train seg. network
- > Step2: freeze the seg network and update the aug. network when running the "real" training step
 - Incite aug. network to generate samples that better train the seg. network


Pipeline

- Step1: 'Synthetic' pass and update segmentation branch
 - ➤ Black arrow: data flow; red arrow: gradient flow


Pipeline


- Step2: 'Real' pass and update augmentation network
 - ➤ Black arrow: data flow; red arrow: gradient flow

6

Framework

Results on synthetic datasets

Settings

- Train both naïve SynthSeg and Learn2Synth with different noise levels added to the training images
 - $\sigma = 0, 0.05, 0.1, 0.15$ and uniformly sampled from [0.05, 0.2]
 - > Test on images with corresponding noise levels

Quantitative results

Check if the network is learning what we expect

Preset $\hat{\sigma}$	0	0.050	0.100	0.150	[0.025 0.2]
Inferred σ^*	0.001	0.042	0.098	0.146	0.134

Table 1. Inferred noise σ under the "noise-only" setting.

Qualitative results

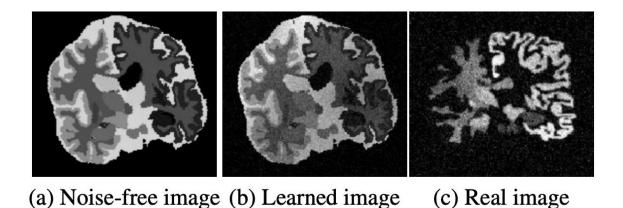


Figure 3. Illustration of learned synthesized image. (a) Noise-free image, (b) learned synthesized image, and (c) real image.

Quantitative results

• Segmentation performance

Test	Model	$\sigma = 0$	$\sigma = 0.05$	$\sigma = 0.1$	$\sigma = 0.15$	$\sigma \sim U$
$\sigma = 0$	N	0.913	0.310	0.209	0.142	0.205
	L	0.923	0.346	0.172	0.092	0.151
	O	0.919	0.361	0.189	0.105	0.167
$\sigma = 0.05$	N	0.889	0.874	0.718	0.520	0.646
	L	0.900	0.887	0.744	0.492	0.635
	O	0.898	0.890	0.736	0.508	0.651
$\sigma = 0.1$	N	0.867	0.858	0.841	0.772	0.815
	L	0.874	0.873	0.858	0.799	0.831
	O	0.871	0.869	0.847	0.810	0.829
$\sigma = 0.15$	N	0.864	0.857	0.847	0.829	0.838
	L	0.860	0.855	0.854	0.840	0.834
	O	0.867	0.860	0.852	0.836	0.841
	N	0.870	0.867	0.850	0.826	0.831
$\sigma \sim U$	L	0.866	0.864	0.851	0.833	0.839
	O	0.872	0.870	0.853	0.837	0.843

Table 2. Segmentation accuracy (Dice) for naive SynthSeg (N), Learn2Synth (L) and Optimized SynthSeg (O).

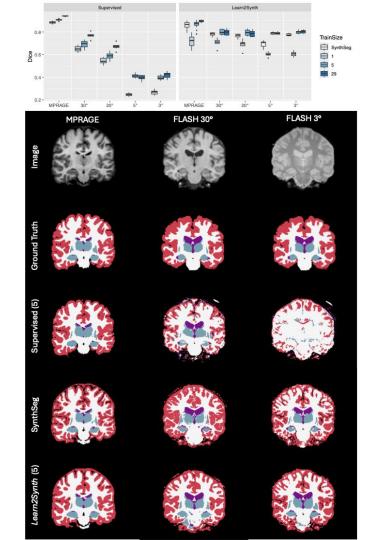
Results on real-world datasets

• 2D Segmentation performance

Method	ABIDE	OASIS3
Supervised UNet	0.908	0.899
SAMSEG	0.875	0.841
Naive SynthSeg	0.869	0.831
Mixed SynthSeg	0.875	0.854
Finetuned SynthSeg	0.871	0.847
AdvChain	0.867	0.848
Learn2Synth (parametric setting fixed σ)	0.878	0.860
<i>Learn2Synth</i> (parametric setting varying σ)	0.881	0.857
<i>Learn2Synth</i> (nonparametric setting fixed σ)	0.879	0.875
<i>Learn2Synth</i> (nonparametric setting varying σ)	0.874	0.881

Table 5. Segmentation accuracy for *Learn2Synth* and the baselines on ABIDE and OASIS3.

Results on real-world datasets


Generalizability

Setting	# of Train, Val., Test	Test Set (MPRAGE)	3°	5°	20°	30°
SynthSeg	1	0.861 ± 0.028	0.776 ± 0.012	0.694 ± 0.027	0.766 ± 0.018	0.781 ± 0.016
Supervised UNet	29, 5, 5	0.941 ± 0.002	0.419 ± 0.025	0.396 ± 0.020	0.671 ± 0.026	0.769 ± 0.022
Supervised UNet	5, 5, 29	0.907 ± 0.007	0.397 ± 0.018	0.413 ± 0.016	0.586 ± 0.033	0.692 ± 0.033
Supervised UNet	1, 5, 33	0.885 ± 0.010	0.267 ± 0.019	0.247 ± 0.013	0.544 ± 0.026	0.651 ± 0.025
Learn2Synth	29, 5, 5	0.895 ± 0.011	0.804 ± 0.014	0.789 ± 0.010	0.785 ± 0.025	0.797 ± 0.023
Learn2Synth	5, 5, 29	0.867 ± 0.030	0.798 ± 0.013	0.789 ± 0.010	0.795 ± 0.026	0.799 ± 0.024
Learn2Synth	1, 5, 33	0.718 ± 0.045	0.606 ± 0.020	0.603 ± 0.017	0.690 ± 0.036	0.707 ± 0.032

Table 6. Performance comparison of different models across various datasets.

Results on real-world datasets

Generalizability

Thank you for your attention! Q&A

