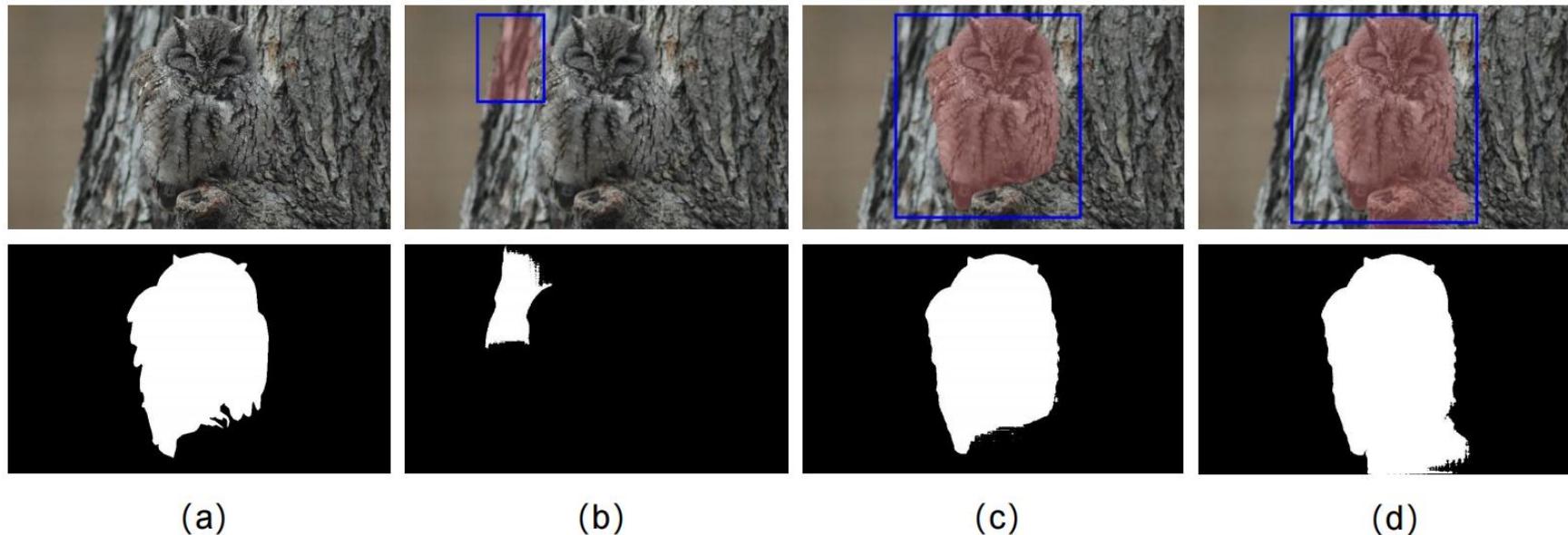


Multi-modal Segment Anything Model for Camouflaged Scene Segmentation

Guangyu Ren^{1*}, Hengyan Liu^{1*}, Michalis Lazarou², Tania Stathaki²

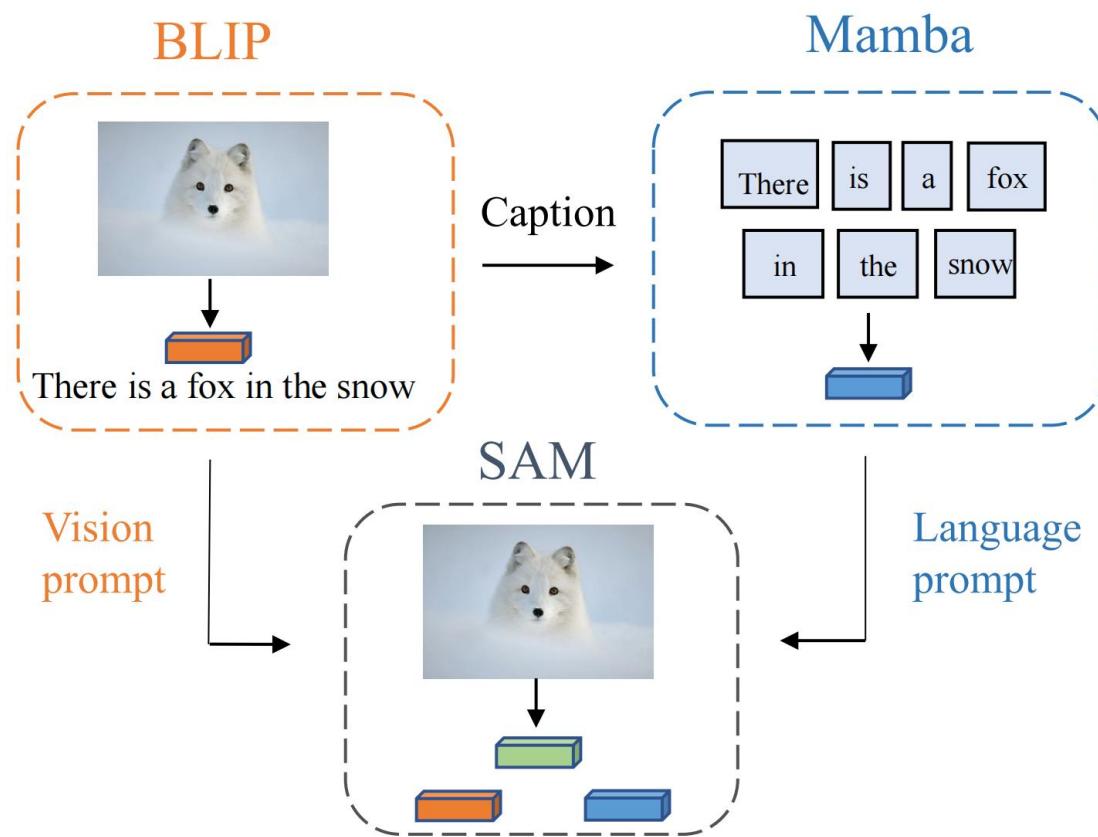
¹Xi'an Jiaotong-Liverpool University, China

²Imperial College London, United Kingdom



Visualization of segmentation results generated by SAM under different bounding-box prompts.

- Despite their success in many vision tasks, deep learning-based methods struggle with COD due to the limited size of available datasets, since insufficient data hinders feature learning and expanding datasets requires costly human annotation.
- Even SAM struggle with COD due to the similarity between background and foreground, as well as their dependence on manual sparse prompts, which are highly error-prone.



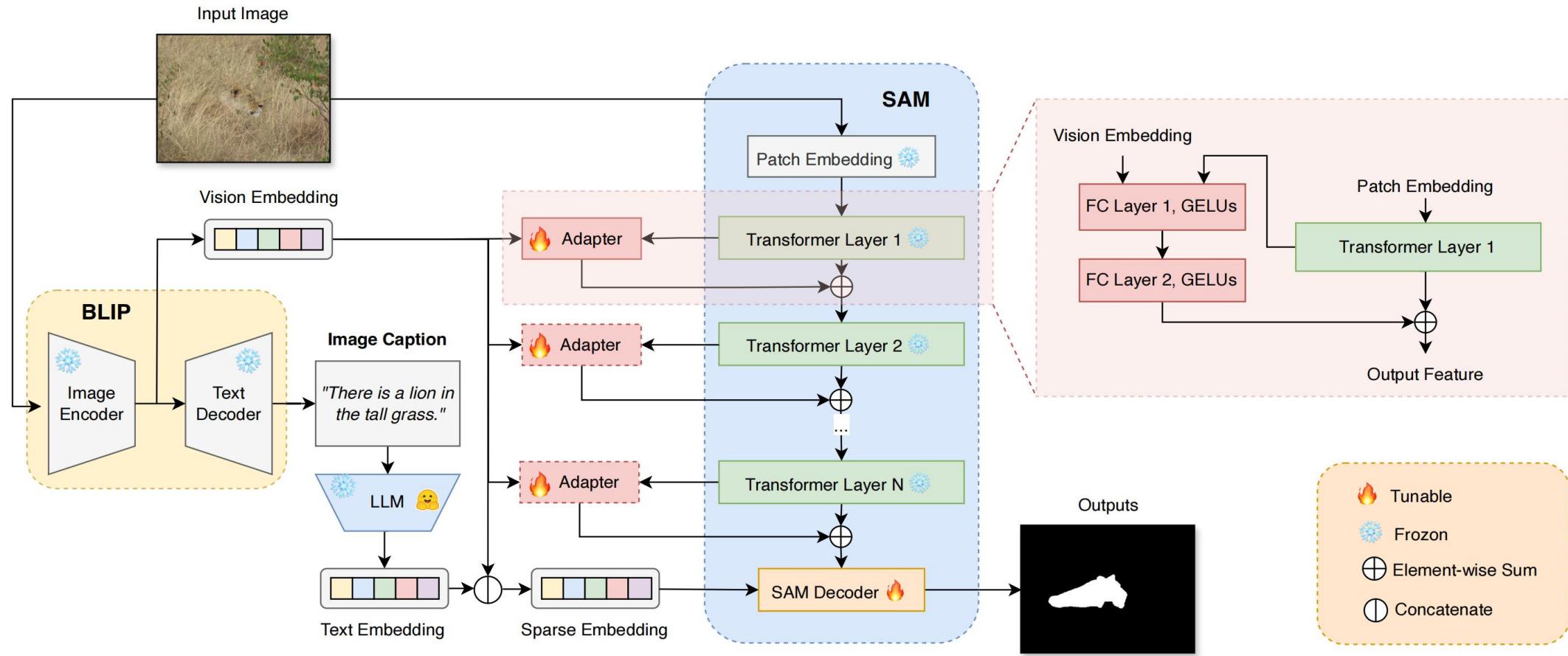
- We use BLIP to generate captions and exploit text embeddings for COD.
- To the best of our knowledge, we are the first to combine vision and language information to enhance SAM in COD.
- We integrate a multi-level adapter and a dense embedding based on SAM's image embedding.
- Our method achieves state-of-the-art results on 11/12 metrics across three COD benchmarks.

IMPERIAL

Xi'an Jiaotong-Liverpool University
西交利物浦大学

ICCV
OCT 19-23, 2025
HONOLULU HAWAII

Methodology

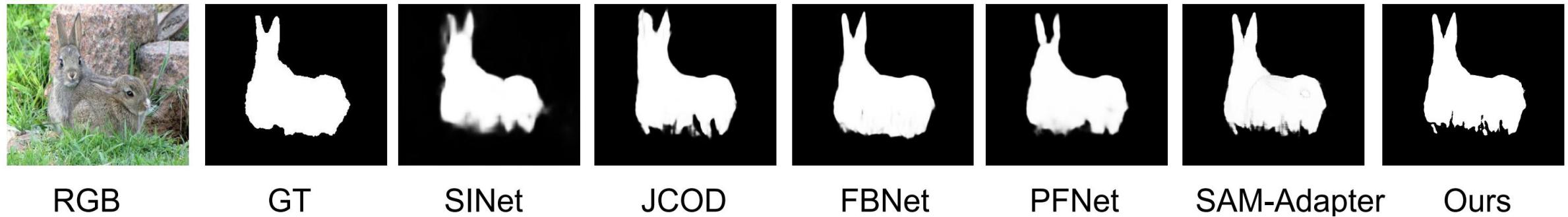


- BLIP Image encoder is used to obtain the vision embedding.
- BLIP's text decoder and the Mamba text encoder are used to obtain the text embedding.
- The Vision embedding is incorporated into SAM using a multi-level adapter.
- The text embedding and the vision embedding are concatenated to form sparse embedding.
- The sparse embedding is concatenated with SAM's image embedding to SAM's decoder.
- SAM's decoder outputs the predicted segmentation mask.

Method	Venue	CVC-ColonDB				Kvasir			
		$S_\alpha \uparrow$	$E_\phi \uparrow$	$F_\beta^w \uparrow$	$Mae \downarrow$	$S_\alpha \uparrow$	$E_\phi \uparrow$	$F_\beta^w \uparrow$	$Mae \downarrow$
GPT4V+SAM [17]	Arxiv23	0.242	0.246	0.051	0.578	0.253	0.236	0.128	0.614
LLaVA1.5+SAM [17, 24]	NeruIPS23	0.357	0.355	0.194	0.491	0.403	0.400	0.293	0.479
X-Decoder [51]	CVPR23	0.331	0.327	0.095	0.462	0.384	0.371	0.202	0.449
SEEM [52]	NeruIPS23	0.284	0.280	0.085	0.570	0.367	0.337	0.215	0.520
GroundingSAM [17, 27]	ICCV23	0.206	0.195	0.071	0.711	0.468	0.521	0.353	0.387
GenSAM [10]	AAAI24	0.379	0.494	0.059	0.244	0.487	0.619	0.210	0.172
ProMaC [11]	NeruIPS24	0.530	0.583	0.243	0.176	0.573	0.726	0.394	0.166
MM-SAM(Training-Free)	Ours	0.451	0.527	0.107	0.317	0.475	0.637	0.159	0.235
MM-SAM(Zero-Shot)	Ours	0.565	0.520	0.220	0.185	0.740	0.756	0.535	0.134

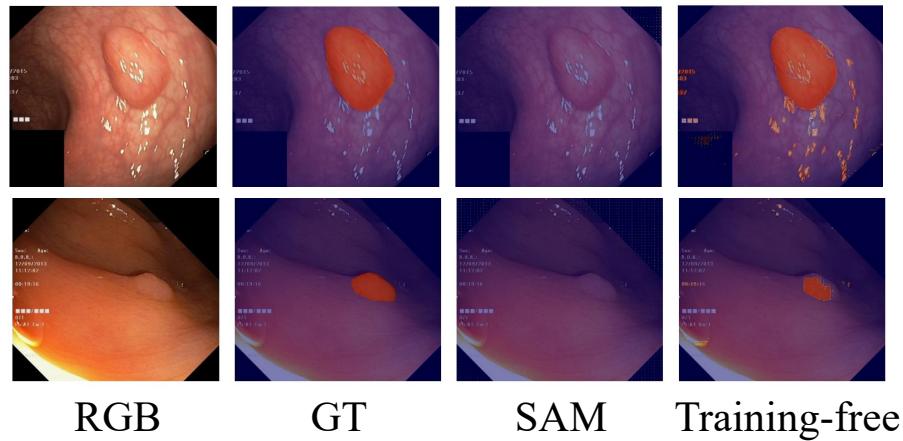
The proposed method outperforms existing algorithms on all datasets and metrics, demonstrating superior robustness, precision, and error reduction in camouflage detection.

Main Experimental Results



Our approach successfully segments challenging samples where other methods struggle, and unlike the ground truth, it also captures fine details such as overlapping grass and rabbits.

Method	Venue	CVC-ColonDB				Kvasir			
		$S_\alpha \uparrow$	$E_\phi \uparrow$	$F_\beta^w \uparrow$	$Mae \downarrow$	$S_\alpha \uparrow$	$E_\phi \uparrow$	$F_\beta^w \uparrow$	$Mae \downarrow$
GPT4V+SAM [17]	Arxiv23	0.242	0.246	0.051	0.578	0.253	0.236	0.128	0.614
LLaVA1.5+SAM [17, 24]	NeruIPS23	0.357	0.355	0.194	0.491	0.403	0.400	0.293	0.479
X-Decoder [51]	CVPR23	0.331	0.327	0.095	0.462	0.384	0.371	0.202	0.449
SEEM [52]	NeruIPS23	0.284	0.280	0.085	0.570	0.367	0.337	0.215	0.520
GroundingSAM [17, 27]	ICCV23	0.206	0.195	0.071	0.711	0.468	0.521	0.353	0.387
GenSAM [10]	AAAI24	0.379	0.494	0.059	0.244	0.487	0.619	0.210	0.172
ProMaC [11]	NeruIPS24	0.530	0.583	0.243	0.176	0.573	0.726	0.394	0.166
MM-SAM(Training-Free)	Ours	0.451	0.527	0.107	0.317	0.475	0.637	0.159	0.235
MM-SAM(Zero-Shot)	Ours	0.565	0.520	0.220	0.185	0.740	0.756	0.535	0.134



- Training-free: Achieves competitive results using foundation model embeddings without fine-tuning.
- Prompting: Foundation models directly provide effective multi-modal prompts for SAM.
- Generalization: Fine-tuned on COD, the model performs strongly on polyp segmentation.

IMPERIAL

Method	DUTS		CUHK	
	$E_\phi \uparrow$	$Mae \downarrow$	$mIoU \uparrow$	$F_\beta \uparrow$
SAMed [48]	0.764	0.104	0.554	0.717
SEEM [52]	0.599	0.326	0.608	0.675
Painter [45]	0.811	0.113	0.186	0.273
PerSAM [49]	0.641	0.257	0.558	0.716
AlignSAM [13]	0.782	0.082	0.685	0.769
MM-SAM	0.877	0.058	0.698	0.746

Without fine-tuning, it achieves superior performance on saliency and blur detection task, demonstrating strong generalization across tasks.

Method	CAMO				COD10K			
	$S_\alpha \uparrow$	$E_\phi \uparrow$	$F_\beta \uparrow$	$Mae \downarrow$	$S_\alpha \uparrow$	$E_\phi \uparrow$	$F_\beta \uparrow$	$Mae \downarrow$
SAM	0.790	0.839	0.619	0.107	0.807	0.801	0.606	0.054
SAM+CLIP	0.779	0.848	0.629	0.101	0.812	0.816	0.631	0.047
SAM+Bert	0.782	0.854	0.634	0.099	0.812	0.823	0.631	0.045
SAM+Llama	0.774	0.852	0.620	0.102	0.806	0.826	0.626	0.047
SAM+Mamba	0.784	0.848	0.630	0.101	0.818	0.833	0.651	0.046

- The SAM baseline includes only the image encoder and mask decoder.
- Compared to CLIP, Mamba achieves more robust COD fine-tuning, while other LLMs provide similar improvements, likely due to BLIP's simple captions.