Multi-modal Segment Anything Model
for Camouflaged Scene Segmentation

Guangyu Ren!*, Hengyan Liu!®, Michalis Lazarou2, Tania Stathaki?

1Xi’an Jiaotong-Liverpool University, China
2Imperial College London, United Kingdom

= €S Xi'an Jiaotong-Liverpool University H[]NI]I.UI.U




Introduction

Visualization of segmentation results generated by SAM under different bounding-box prompts.

» Despite their success in many vision tasks, deep learning-based methods struggle with COD due to the limited size of
available datasets, since insufficient data hinders feature learning and expanding datasets requires costly human
annotation.

» Even SAM struggle with COD due to the similarity between background and foreground, as well as their dependence
on manual sparse prompts, which are highly error-prone.
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Contributions
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Methodology
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» BLIP Image encoder is used to obtain the vision embedding.
» BLIP’s text decoder and the Mamba text encoder are used to obtain the text embedding.
»  The Vision embedding is incorporated into SAM using a multi-level adapter.
» The text embedding and the vision embedding are concatenated to form sparse embedding.
»  The sparse embedding is concatenated with SAM’s image embedding to SAM’s decoder.
» SAM’s decoder outputs the predicted segmentation mask.




Main Experimental Results

CVC-ColonDB Kvasir

Method Venue

Sat Ept FZT Mael Sa1 Ept FFT Mael
GPT4V+SAM [17] Arxiv23 0.242 0.246 0.051 0578 0.253 0.236 0.128 0.614
LLaVA1.5+SAM [17,24] NerulPS23 0.357 0.355 0.194 0.491 0403 0400 0.293 0.479
X-Decoder [51] CVPR23 0.331 0.327 0.095 0462 0.384 0.371 0202 0.449
SEEM [52] NerulPS23 0.284 0.280 0.085 0.570 0.367 0.337 0.215 0.520
GroundingSAM [17, 27] ICCV23 0.206 0.195 0.071 0.711 0468 0.521 0353 0.387
GenSAM [10] AAAI24 0.379 0.494 0.059 0244 0487 0.619 0210 0.172
ProMaC [11] NerulPS24 0.530 0.583 0.243 0.176 0.573 0.726 0.394 0.166
MM-SAM(Training-Free) Ours 0.451 0.527 0.107 0.317 0475 0.637 0.159 0.235
MM-SAM(Zero-Shot) Ours 0.565 0.520 0220 0.185 0.740 0.756 0.535 0.134

The proposed method outperforms existing algorithms on all datasets and metrics, demonstrating superior

robustness, precision, and error reduction in camouflage detection.
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Main Experimental Results

RGB GT SINet JCOD FBNet PFNet SAM-Adapter Ours

Our approach successfully segments challenging samples where other methods struggle, and unlike the
ground truth, it also captures fine details such as overlapping grass and rabbits.
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Training-free Medical Image Segmentation

CVC-ColonDB Kvasir

Method Venue

Sa1 Est Fy1 Mael Sat FEs1 F§1t Mael
GPT4V+SAM [17] Arxiv23 0242 0246 0051 0578 0253 0236 0.128 0.614 > Traini free: Achi .. I
LLaVAI.5+SAM [17,24] NeruIPS23 0.357 0.355 0.194 0491 0.403 0400 0293 0.479 raining-iree: Achieves competitive results
X-Decoder [51] CVPR23 0331 0327 0.095 0462 0384 0371 0202 0.449 ) i ) :
SEEM [52] NerulPS23 0284 0280 0.085 0570 0367 0337 0215 0520 using foundation model embeddings without
GroundingSAM [17, 27] ICCV23 0206 0.195 0.071 0711 0468 0521 0353 0387 )
GenSAM [10] AAAI24 0379 0494 0059 0244 0487 0.619 0210 0.172 fine-tuning.
ProMaC [11] NerulPS24 0.530 0.583 0.243 0.176 0.573 0.726 0394 0.166 . , ,
MM-SAM(Training-Free) Ours 0451 0527 0.107 0317 0475 0.637 0.159 0.235 » Prompting: Foundation models directly
MM-SAM(Zero-Shot) Ours 0.565 0520 0220 0.185 0.740 0.756 0.535 0.134

provide effective multi-modal prompts for
SAM.

»  Generalization: Fine-tuned on COD, the model

- . performs strongly on polyp segmentation.

SAM  Training-free
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Zero-shot Transfer

DUTS CUHK
Method
Eyt Mael milIoU?T Fg?

SAMed [48] 0.764  0.104 0.554 0.717 . o . _

SEEM [52] 0.599 0.326 0.608 0.675 Without fine-tuning, it achieves superior performance

Painter [45] 0.811 0.113 0.186 0.273 on saliency and blur detection task, demonstrating

PerSAM [49] 0.641  0.257 0.558  0.716 strong generalization across tasks.

AlignSAM [13] 0.782  0.082 0.685 0.769

MM-SAM 0.877 0.058 0.698 0.746
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Text Encoder Analysis

CAMO COD10K
Method
SaT EpT Fgt Mael Sat Est Fgt Mael
SAM 0.790 0.839 0.619 0.107 0.807 0.801 0.606 0.054

SAM+CLIP 0.779 0.848 0.629 0.101 0.812 0.816 0.631 0.047
SAM-+Bert 0.782 0.854 0.634 0.099 0.812 0.823 0.631 0.045
SAM+Llama  0.774 0.852 0.620 0.102 0.806 0.826 0.626  0.047
SAM+Mamba 0.784 0.848 0.630 0.101 0.818 0.833 0.651 0.046

» The SAM baseline includes only the image encoder and mask decoder.
» Compared to CLIP, Mamba achieves more robust COD fine-tuning, while other
LLMs provide similar improvements, likely due to BLIP’s simple captions.
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