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Motivation o The Proposed Method APT
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» Current prompt tuning-based OOD detectors rely on the background regions of few-shot ID data to obtain OOD features, which horse — A A
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are often not diverse enough and can lead to significant performance drop on challenging scenarios, e.g., hard OOD. T Global logt
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» We propose APT to leverage auxiliary/outlier data to incorporate diverse OOD features into prompt tuning for OOD detection. > Two main modules of APT: Adaptive Logit-based KL Divergence (ALK) & Foreground-background Pair Regularization (PairReg)

To make it possible, we also curate an auxiliary dataset for well-established OOD detection benchmarks (ID data: ImageNet-1k). > ALK decomposes foreground-background regions of outlier images in an unsupervised way (outlier classes are unknown) by

measuring the semantic similarities of local regions to the global features via KL divergence between their classification logits:
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16-shot where f! are local features from image encoder and g,,, are embeddings
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Experiments
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» Comprehensive results show that APT achieves SotA performance on standard and hard OOD benchmarks, with Ppair ($ Z) p (.CL’ Z) +D (’CU J )
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significant improvements in challenging scenarios, e.g., reducing ~5% FPR95 in 1-shot hard OOD tasks. Lapr =Ezox,,.lcloop(p(J £“Ck))+ 16-shot ¥ X 26.08 93.60 92.07 59.41
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