

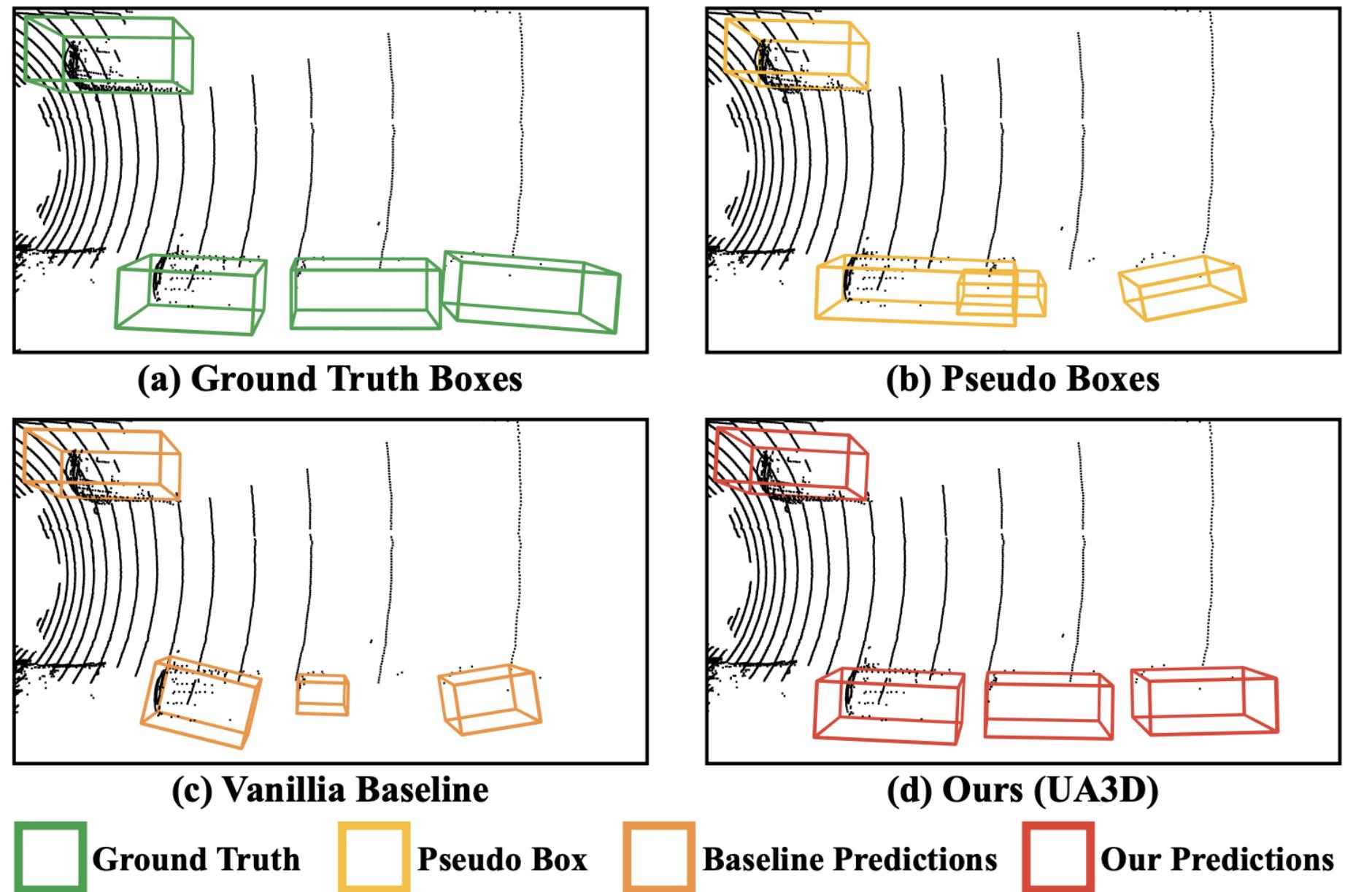
Harnessing Uncertainty-aware Bounding Boxes for Unsupervised 3D Object Detection

Ruiyang Zhang¹ Hu Zhang² Zhedong Zheng¹

¹FST and ICI, University of Macau, China ²CSIRO Data61, Australia

Download
Code

1. Motivation



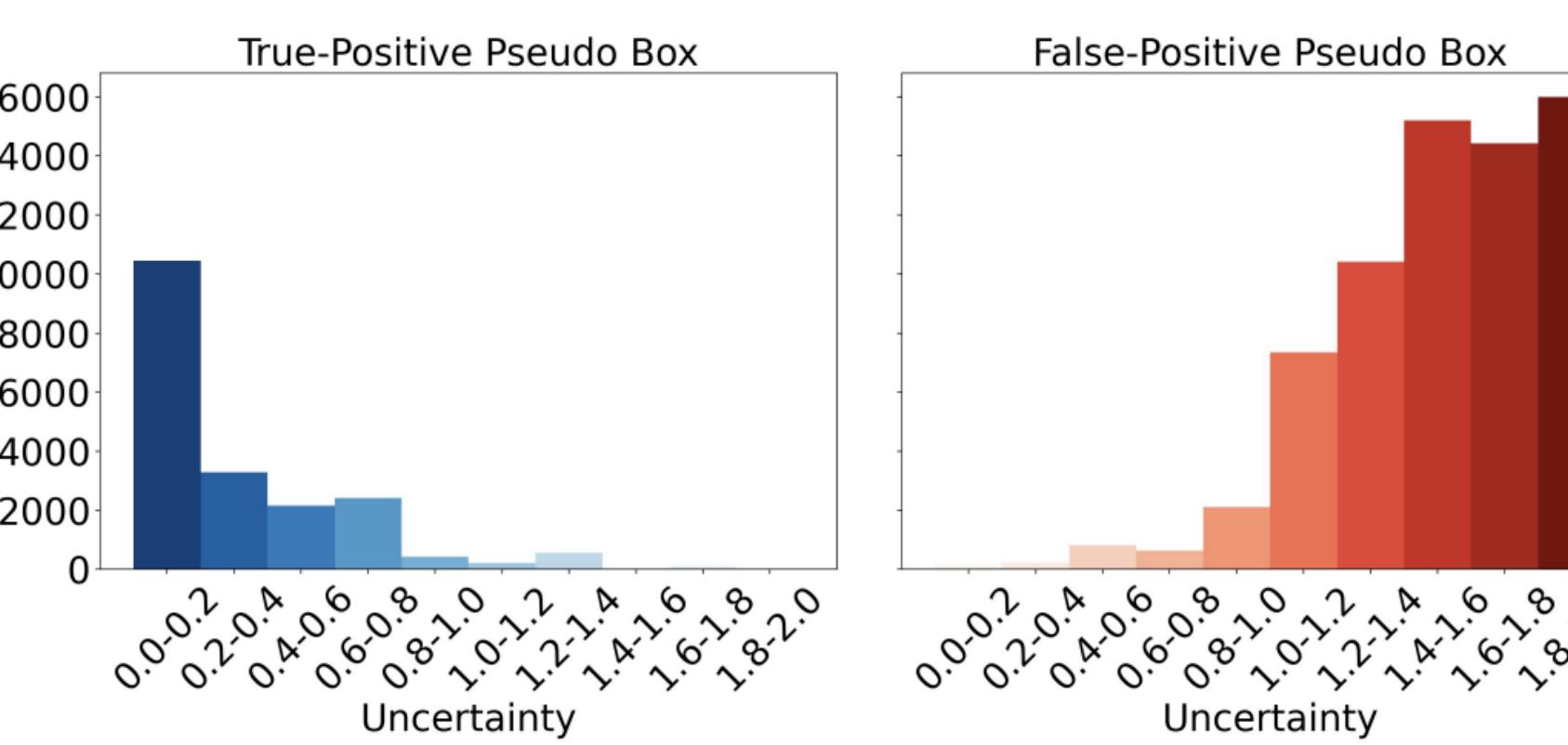
- As shown in the Figure, we notice that **pseudo boxes** generated by clustering-based algorithms often contain **noise** (comparing (a) and (b)). Previous methods (c) directly utilize those noisy pseudo boxes to train detection model, leading to **suboptimal** performance.

2. Contributions

- We introduce **fine-grained uncertainty estimation** to assess the quality of pseudo boxes in a learnable manner. Following this, we leverage the estimated uncertainty to regularize the iterative training process, realizing the coordinate-level adjustment in optimization.
- Quantitative experiment and Qualitative analysis on nuScenes and Lyft validate the efficacy of our uncertainty-aware framework.

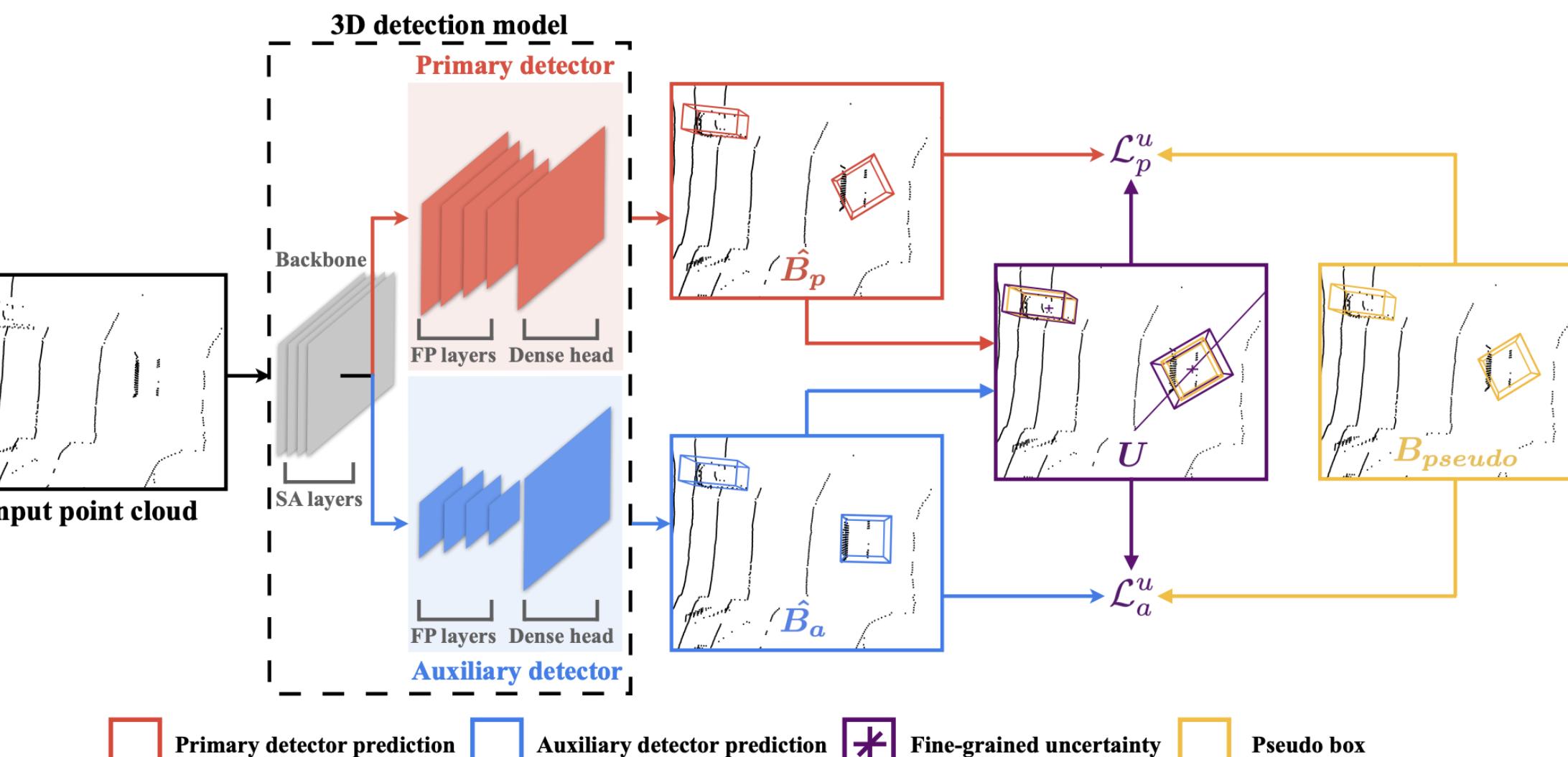
3. Method

Relation between Uncertainty and Pseudo Boxes



Generally, Our UA3D reliably assigns low uncertainty to accurate pseudo boxes and high uncertainty for noisy ones. For illustration, we average coordinate-level uncertainty to box level.

Overview Pipeline



Objectives

Coordinate-level Uncertainty

$$\begin{aligned}\Delta_x &= |x_p - x_a|, \Delta_y = |y_p - y_a|, \Delta_z = |z_p - z_a|, \\ \Delta_l &= |l_p - l_a|, \Delta_w = |w_p - w_a|, \Delta_h = |h_p - h_a|, \\ \Delta_\theta &= |\theta_p - \theta_a|,\end{aligned}$$

$$U = [\Delta_x, \Delta_y, \Delta_z, \Delta_l, \Delta_w, \Delta_h, \Delta_\theta] \in \mathbb{R}^{n \times 7}$$

Adaptive Uncertainty Regularization

$$\mathcal{L}_p^u = \sum_{i=1}^7 \left(\frac{\mathcal{L}_{p,i}}{\exp(U_i)} + \lambda \cdot U_i \right), \mathcal{L}_a^u = \sum_{i=1}^7 \left(\frac{\mathcal{L}_{a,i}}{\exp(U_i)} + \lambda \cdot U_i \right) \quad \mathcal{L}_{total} = \mathcal{L}_p^u + \mu \cdot \mathcal{L}_a^u$$

4. Experiments

Quantitative Results

Method	Conference	Data	Round	0m-30m		30m-50m		50m-80m		0m-80m	
				AP _{BEV}	AP _{3D}						
<i>LiDAR-Based</i>											
MODEST [50]	CVPR'22	L	0	16.5	12.5	1.3	0.8	0.3	0.1	7.0	5.0
MODEST [50]	CVPR'22	L	10	24.8	17.1	1.4	1.5	0.5	1.1	11.8	6.6
OYSTER [53]	CVPR'23	L	0	14.7	12.3	1.5	1.1	0.5	0.3	6.2	5.4
OYSTER [53]	CVPR'23	L	2	26.6	21.3	4.4	1.8	1.7	0.4	12.7	8.0
LiSe [54]	ECCV'24	L	0	14.8	12.3	1.5	0.4	0.4	0.2	6.1	4.2
LiSe [54]	ECCV'24	L	10	31.4	21.1	7.0	2.5	0.5	0.3	15.7	9.0
UA3D (ours)	-	L	0	13.7	11.5	0.9	0.6	0.5	0.2	5.4	4.9
UA3D (ours)	-	L	2	30.1	19.8	7.8	2.9	3.1	0.5	15.1	9.1
UA3D (ours)	-	L	10	38.3	23.8	10.1	3.5	4.3	0.7	19.6	10.5
<i>LiDAR-Image Fusion</i>											
LiSe [54]	ECCV'24	L & I	0	5.8	4.7	0.6	0.2	0.3	0.2	2.1	1.8
LiSe [54]	ECCV'24	L & I	10	35.0	24.0	11.4	4.4	4.8	1.3	19.8	11.4
UA3D (ours)	-	L & I	0	8.4	7.3	0.8	0.5	0.4	0.8	3.5	2.4
UA3D (ours)	-	L & I	10	38.2	24.7	12.5	4.9	5.0	1.7	21.3	12.1

Table 1. **Quantitative Results on nuScenes** [2]. UA3D significantly surpasses the state-of-the-art LiSe [54] across all evaluated metrics. This validates the efficacy of proposed coordinate-level uncertainty estimation and regularization in mitigating negative impacts of noisy pseudo boxes, thereby enhancing detection performance. We report AP_{BEV} / AP_{3D} at IoU=0.25. 'L' for LiDAR data and 'I' for image data. Round refers to the number of self-training round. The best results are in **bold**, and the second-best results are underlined.

Method	Conference	Data	Round	0m-30m		30m-50m		50m-80m		0m-80m	
AP_{BEV}	AP_{3D}	AP_{BEV}	AP_{3D}	AP_{BEV}	AP_{3D}	AP_{BEV}	AP_{3D}				

LiDAR-Based											
Supervised [50]	-	-	-	82.8	82.6	70.8	70.3	50.2	49.6	69.5	69.1
MODEST-PP [50]	CVPR'22	L	0	46.4	45.4	16.5	10.8	0.9	0.4	21.8	18.0
MODEST-PP [50]	CVPR'22	L	10	49.9	49.3	32.3	27.0	3.5	1.4	30.9	27.3
MODEST [50]	CVPR'22	L	0	65.7	63.0	41.4	36.0	8.9	5.7	42.5	37.9
MODEST [50]	CVPR'22	L	10	73.8	71.3	62.8	60.3	27.0	24.8	57.3	55.1
LiSe [54]	ECCV'24	L	0	42.9	42.6	11.0	10.7	0.5	0.4	20.0	19.6
LiSe [54]	ECCV'24	L	10	76.0	73.4	64.7	61.8	28.5	24.9	59.8	56.1
UA3D (ours)	-	L	0	66.0	63.3	43.8	36.3	8.9	5.1	43.2	38.0
UA3D (ours)	-	L	10	76.5	73.6	64.6	62.0	36.8	29.0	62.1	57.9
LiDAR-Image Fusion											
LiSe [54]	ECCV'24	L & I	0	54.5	54.0	24.2	22.8	1.4	1.2	29.2	27.5
LiSe [54]	ECCV'24	L & I	10	76.7	74.0	66.1	64.4	46.6	43.7	65.6	62.5
UA3D (ours)	-	L & I	0	60.3	57.4	35.5	28.6	2.4	2.5	35.8	31.1
UA3D (ours)	-	L & I	10	78.2	74.6	67.3	65.1	49.2	46.0	68.1	64.2

Table 2. **Quantitative Results on Lyft** [11]. UA3D outperforms LiSe [54] by a clear margin, under both LiDAR-based and LiDAR-image fusion settings. Notably, we employ same hyper-parameters as those in nuScenes, validating robustness of UA3D across different datasets.

Ablation Studies

Method	0m-30m		30m-50m		50m-80m		0m-80m	
BEV	3D	BEV	3D	BEV	3D	BEV	3D	

Rule-Based								
Distance Rule	29.6	19.6	7.2	2.2	3.2	0.5	14.8	8.1
Volume Rule	25.7	17.7	5.6	2.2	2.5	0.4	12.3	7.4
Num. Point Rule	27.3	17.6	7.3	2.8	2.3	0.3	13.7	7.5
Regression-Based								
Additional Channel	26.3	18.8	4.9	2.2	2.0	0.3	12.1	7.7
Additional FC	27.2	19.7	4.0	1.9	1.2	0.1	12.5	8.1
Ensemble-Based								
10 Members	32.5	20.7	5.5	2.3	3.1	0.4	15.0	8.6
20 Members	32.1	23.8	10.1	3.5	3.6	0.7	15.3	9.1
Monte Carlo Dropout-Based								
$p = 0.1, N = 10$	29.6	19.6	7.2	2.2	3.2			