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Introduction

▪ Contrastive Language-Image 

Pre-training (CLIP) 

▪ Pre-training

• Aligned vision and language representations

• Contrastive learning

• Paired images and texts

▪ Zero-shot prediction

• Use label text

• Create a classifier

▪ Various computer vision tasks

• Integrate human languages
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Motivation: Test-Time Adaptation

▪ Distribution shift
• Different source and target domains

• Degrade performance

▪ Domain adaptation
• Access to labelled source data

• Access to unlabelled target data (before testing)

▪ Problems
• Cannot access the source data due to privacy or 

data retention policies

• Cannot access the target data (before testing) due 
to time-consuming collection or the constantly 
changing environment

▪ Solution: Test-time adaptation
• No access to source data

• Only access to unlabelled test samples one by one
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Motivation: Retrieval Augmentation

▪ Training-based adaptation

• Retrain the model using test samples

• High computational cost

• Not affordable in computationally 

resource-limited real-world applications

▪ Solution: Retrieval augmentation

• Construct a test-time database 

• Store important test information

• Retrieve information in the database 

• Training-free with lower computational cost
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Method Speed 

(ms/sample)

GPU Usage 

(MB)

Training-based adaptation

(prompt tuning)

103 2213.53

Training-free adaptation

(our method)

12.93 535.10 



Motivation: Multimodal Retrieval

▪ Limitations of CLIP 

• Optimized to reduce the inter-modal (vision-text) 

similarities rather than the intra-modal (vision-

vision or text-text) similarities

• Similar images in the vision (image) feature space 

are not well clustered

• Cosine similarity distribution indicates that 

matched and unmatched pairs are more easily 

distinguishable in the multimodal (CLIP) space 

▪ Solution: Multimodal Retrieval

• Vision space retrieval

• Multimodal space retrieval  
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Cosine similarity distributions of matched and 

unmatched image-text pairs (inter-modal) 

exhibit less overlap than those of matched and 

unmatched image-image pairs (intra-modal) 



Method: Overview

▪ Test-time Retrieval-augmented Adaptation

• Contrastive Language-Image Pre-training (CLIP) 

• Streaming Mixture of Gaussian Database (SMGD)

• Multimodal Retrieval Augmentation (MRA)

6



Method: Streaming Mixture of Gaussian Database

▪ Estimate the test distribution from streaming data

▪ Test sample embedding 𝑓𝑡 draws from a mixture of Gaussian distribution 𝑓𝑡~ σ𝑘 𝑤𝑘𝒩(𝜇𝑘 , Σ𝑘)

• Pseudo labels are obtained from the CLIP prediction to determine the class

▪ Updates of SMGD

• Mean update: 𝜇𝑘
𝑡 = 1 − 𝜂 𝜇𝑘

𝑡−1 + 𝜂𝑓𝑡

• Covariance update: Σ𝑘
𝑡 = 1 − 𝜂 Σ𝑘

𝑡−1 + 𝜂(𝑓𝑡−𝜇𝑘
𝑡 )(𝑓𝑡−𝜇𝑘

𝑡 )𝑇
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• Entropy update: ℎ𝑘
𝑡 = 1 − 𝜂 ℎ𝑘

𝑡−1 + 𝜂𝐻(𝑃𝐶𝐿𝐼𝑃
𝑡 )

• Only update SMGD if new test sample’s entropy 

is lower than the current SMGD entropy



Method: Multimodal Retrieval Augmentation

▪ Vision-space retrieval

• Similarity retrieval 𝑃𝑠𝑖𝑚 𝑓𝑡 = 𝐿𝐴(𝐺𝑇𝑓𝑡), where 𝐺 = [𝜇1, 𝜇2, … , 𝜇𝐾]

• Discriminant analysis 

Ω𝑑𝑖𝑠𝑐 𝑓𝑡 = 𝐺𝑇Σ𝑡−1
𝐺 −

1

2
𝑑𝑖𝑎𝑔 𝐺𝑇Σ𝑡−1

𝐺 + 𝑙𝑜𝑔
1

𝐾
𝟏𝐾, and 𝑃𝑑𝑖𝑠𝑐 𝑓𝑡 = 𝐿Ω𝑑𝑖𝑠𝑐 𝑓𝑡

• Vision space prediction 𝑃𝑅
𝒱 𝑓𝑡 = 𝑃𝑠𝑖𝑚 𝑓𝑡 +𝑃𝑑𝑖𝑠𝑐 𝑓𝑡
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Method: Multimodal Retrieval Augmentation

▪ Multimodal-space retrieval

• Transform SMGD centers from vision to multimodal space Ψ = 𝜎(𝑍𝑇𝐺)

• Transform test sample embedding from vision to multimodal space 𝜓 = 𝜎(𝑍𝑇𝑓𝑡)

• Compare the similarity of the test sample and each center Φ𝑘 = 𝐾𝐿(𝜓||Ψ𝑘)

• Obtain the multimodal space prediction 𝑃𝑅
ℳ = −𝐿Φ
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Experiment: Competing Methods

▪ Training-based adaptation

• CoOp and CoCoOp tune prompts using training samples

• TPT and DiffTPT tune prompts using test samples

▪ Training-free adaptation

• Distribution-based methods 

• MTA uses MeanShift algorithm 

• DN uses distribution normalization

• Cache-based methods

• TDA employs a positive and a negative cache

• DMN comprises a dynamic and a static cache

• Entropy-based method

• ZERO sets the temperature of most confident predictions as 
zero to approximate marginal entropy minimization
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Experiment: Comparisons

▪ Better than both training-based 

and training-free adaptation 

approaches on average

▪ Achieved SOTA performance on 

the cross-domain (CD) and out-of-

distribution (OOD) benchmarks
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Experiment: Ablation Studies

▪ SMGD contributes more than 1% improvement

▪ MRA and SMGD show complementary benefits

▪ Consistent improvements on both ViT-B/16 and ResNet-50

▪ Detailed analysis of MRA shows the effectiveness of each component
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Experiment: Parameter Analysis and Access to More Data

▪ 𝜂 balances the historical and new information

▪ Empirical optimal value 𝜂 = 0.65 on UCF101, 

suggesting 35% historical information and 65% 

new information
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▪ Accessing to the additional target domain’s training 

data allows us to directly estimate target domain 

statistics

▪ Perform the same retrieval augmentation

▪ Significant performance boost without training



Experiment: Generalizations

▪ Experiments with other 

VLMs

• SigLIP

• ALIGN

• FLAVA

▪ Consistent improvements 

demonstrate generalization 

of our method
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Thank You!

Please feel free to discuss and ask questions.
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