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Inverse problems
Solving inverse problems is the task of restoring data, represented as vectors x ∈ Rn given corrupted versions
y ∈ Rd. Usually, this corruption process is expressed as

y = A(x) + σyn,
where A is the (possibly nonlinear) forward measurement operator, and n is some noise, e.g. Gaussian.

(a) Image with missing data (b) Inpainted image

Figure: Inpainting (Rout et al. [6])
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Background: Latent Diffusion Models (LDMs)

Figure: Latent Diffusion scheme (Source NeurIPS 2023 Tutorial)
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Some Diffusion-based inverse solvers

Figure: Blurry image

⇒

Figure: Denoised image
1 Diffusion Models for Plug-and-Play Image Restoration (DiffPIR) [8] adopts a plug-and-play method

where the prior adopted is a DM.
2 Diffusion Posterior Sampling (DPS) [2] adopts a Bayesian approach to compute the posterior probability

p(xt|y) at each step of the diffusion process.
3 Posterior Sampling with Latent Diffusion (PSLD) [6] implements some ”tricks” to adapt DPS to a LDM
4 P2L [3] optimizes the prompt c while sampling
5 TReg [5] optimizes the null prompt c∅ while sampling, exploiting the Classifier Free Guidance (CFG)

scheme
Alessio Spagnoletti ICCV2025 October 4, 2025 4 / 22



Drawbacks of LDM-based algorithms

Current State of the Art (SOTA) LDM-based methods present the following problems:

Elevated number of steps, meaning that on average ∼ 1000 Neural Function Evaluations (NFEs) are
needed

High memory usage since methods like DPS require to compute gradients, and in the latent space, this
also involves the D and/or E : ∇zt log p(y|zt) ∝ ∇zt∥AD(z(t)

0 (zt))− y∥2
2

These two reasons prevent scalability and force to ”low” resolutions (≤ 5122).
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Latent Consistency Models (LCMs)

Consistency Models (CMs) [7] accelerate sampling from diffusion models. They satisfy:

Definition (Consistency function)
Given a small η > 0 and a trajectory {xt}t∈[η,T] of the PF-ODE, we define the consistency function as
Gθ : (xt, t) → xη.

ensuring self-consistency across timesteps.
Intuition: The probability flow ODE defines a one-to-one 
mapping between noise and data. Consistency models 
learn to estimate this mapping.

Definition:

Parameterization: Need to satisfy the boundary 
condition at 𝑡 = 0.

Sampling: one-step or multi-step.

Training:
• Consistency Distillation (CD)

• Consistency Training (CT), valid when 

• Continuous-Time Consistency Training

Properties: 
• These loss functions only provide gradients; their values 

are not useful for model comparison.
• Analogous to temporal difference learning in RL and 

bootstrap your own latents in unsupervised learning.

Standard SDE formulation:

Probability flow ODE:

Estimating the score function:

Sample generation:

• Numerical SDE solvers
• Numerical ODE solvers
• Score-based MCMC (predictor-corrector)
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Latent Consistency Models (LCMs)
Consistency Models (CMs) [7] accelerate sampling from diffusion models. They satisfy:

Definition (Consistency function)
Given a small η > 0 and a trajectory {xt}t∈[η,T] of the PF-ODE, we define the consistency function as
Gθ : (xt, t) → xη.

ensuring self-consistency across timesteps.

Latent Consistency Models (LCMs) extend this idea to the latent space of a pre-trained LDM:

Learn single-step mapping from noisy latents zt to clean latents z0.

High sample quality with very few steps (N = 1 − 4).

Given timesteps t1 > t2 > · · · > tN−1 > η, the multistep consistency sampling process is
ẑT ∼ N (0, Id), z = Gθ(ẑT,T)

For n = 1 to N − 1 :

ẑtn = z +
√

(1 − αtn)− (1 − αη)ϵ with ϵ ∼ N (0, Id)
z = Gθ(ẑtn , tn),
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LATINO: Gradient-Free Posterior Sampling with LCMs
We introduce LATINO, a novel Plug-and-Play (PnP) method leveraging pre-trained text-to-image Latent
Consistency Models (LCMs). LATINO samples from the posterior p(x | y, c):

Gradient-free sampling with very few function evaluations (only 8 NFEs).

Efficient scaling to high-resolution images (≥ 10242) with low GPU memory usage.

Naturally prompt-conditioned, enabling semantic control by users.

Based on a novel Langevin-inspired PnP approach designed specifically for LCMs, employing stochastic
auto-encoders (SAE).

We further propose LATINO-PRO, which integrates automatic prompt optimization via stochastic proximal
gradient methods:

Automatically finds optimal prompts: ĉ(y) = argmaxc∈Rk p(y | c).

Corrects incomplete or misleading prompts efficiently.

Still requires minimal computational effort (only 68 NFEs).
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LATINO: Langevin Diffusion Formulation

Consider sampling from the posterior distribution via an overdamped Langevin diffusion:

dxs = ∇ log p(y|xs)ds +∇ log p(xs|c)ds +
√

2dws, (1)
where ws is an n-dimensional Brownian motion. Under mild assumptions, the process converges exponentially
fast to p(x|y, c) as s → ∞. Exact solutions are generally intractable; hence approximations are required (e.g.,
Euler-Maruyama leading to ULA).

Limitations of ULA:

Explicit Euler step integration.

Stability constraints: small step-size δ required.

Potentially large discretization bias.
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LATINO: Split Integration Approach

LATINO employs a split integration approximation:

u = x̃0 +

∫ δ

0
∇ log p(x̃s|c)ds +

√
2dws, x̃0 = xk, (2)

xk+1 = u + δ∇ log p(y|xk+1). (3)

Advantages of this splitting:

Accuracy: No discretization bias in the prior step.

Stability: Implicit Euler integration ensures numerical stability for all δ > 0.

Efficiency: The implicit Euler step translates into a tractable proximal step:

xk+1 = proxδgy(x̃k+1), gy(x) = − log p(y|x)

efficiently solvable in common inverse problems (e.g., deblurring, super-resolution).

LATINO approximates the prior step by a SAE derived from a CM, maintaining computational feasibility.
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LATINO pipeline

x(k−1) x̃(k) x(k)

proxδkgy

zt = z′t
x z0 zt x′z′0z′t

E(·) D(·)p(zt | z0) Gθ (·, t, c)

Figure: One step of the LATINO solver, a discretization of the Langevin SDE which targets the posterior p(x|y, c). The
current iterate xk is encoded by the VAE encoder and propagated forward via a noising diffusion kernel p(zt|z0). This
process is then reversed via the latent consistency model and the VAE decoder, followed by the proximal operator to
involve the likelihood p(y|x).

Alessio Spagnoletti ICCV2025 October 4, 2025 10 / 22



Auto-Encoding Stable Diffusion

Goal: Construct a stochastic auto-encoder (Et,Dt,c) contracting random variables towards p(x|c) with p(x|c) as
a fixed point.

Stochastic Encoder (Et):
zt|x ∼ N (

√
αtE(x), (1 − αt)Idk),

obtained by applying deterministic encoder E followed by the forward SDE dxt = −βt
2 xtdt +

√
βtdw.

Decoder (Dt,c): Maps latent z′t to the ambient space:

x′ = D(Gθ(z′t, t, c)).

Contraction and Fixed Point:

If x ∼ p(x|c) exactly, encoding via Et and subsequent decoding through Dt,c yields x′ distributed as p(x|c)
(fixed point property).

For distributions different from p(x|c), (Et,Dt,c) progressively contracts samples toward p(x|c).
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Contraction Dynamics
Role of parameter t:

Large t: Strong contraction towards p(x|c); behaves as a standard generative model.
Small t: Approximate identity map (E ,D), limited contraction.
Intermediate t: Balances identity preservation and contraction toward target distribution.

Figure: SAE applied to images in and out of distribution for different values of t, illustrating contraction towards p(x|c).
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LATINO-PRO

Prompt optimization via Maximum Marginal Likelihood Estimation (MMLE):
LATINO-PRO addresses the challenge of selecting optimal text prompts c by maximizing the marginal likelihood:

ĉ(y) = argmax
c∈Rk

p(y | c), p(y | c) = Ez|c[p(y|z)]

Motivation:

In ill-posed inverse problems, the likelihood p(y|z) is often weakily informative, thus the prior p(z|c)
(encoded by the generative model) becomes critical.

Directly solving MMLE is computationally intractable; hence, stochastic optimization methods are required.
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LATINO-PRO: Stochastic Prompt Optimization
LATINO-PRO uses a Stochastic Approximation Proximal Gradient (SAPG) scheme:

cm+1 = ΠC [cm + γm∇c log p(y|cm)] ,

where γm is a sequence of decreasing positive step-sizes and C ⊂ Rk is a convex set of admissible values for c.
From Fisher’s identity we get

∇c log p(y | cm) = Ez|y,cm [∇c log p(y, z | cm)] ,

= Ez|y,cm [∇c log p(z | cm)] ,

which motivates the approximation using samples from LATINO:

∇c log p(y|cm) ≈ ∇c log p(z(1), . . . , z(N)|cm).

Key Practical Considerations:

Automatic differentiation (AD) in latent space makes gradient computation tractable.

Starting from a descriptive prompt (e.g., ”a sharp photo of a dog”) accelerates convergence and improves
sample quality.

Early stopping of prompt optimization provides regularization and improves results.
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Quantitative results: AFHQ

Deblur (Gaussian) SR×16
Method NFE↓ FID↓ PSNR↑ FID↓ PSNR↑
LATINO-PRO 68 18.37 26.82 30.40 21.52
LATINO 8 20.03 26.25 42.14 20.05
P2L [3] 2000 85.80 20.96 121.7 19.99
TReg [5] 200 35.47 21.13 37.13 19.60
LDPS 1000 64.88 22.60 101.13 17.34
PSLD [6] 1000 125.5 20.52 113.4 16.48

Table: Results for Gaussian Deblurring with σ = 5.0, and ×16 super-resolution, both with noise σy = 0.01 on the
AFHQ-512 val dataset. Our LATINO and LATINO-PRO models are compared to recent state-of-the-art methods.
Prompts: a sharp photo of a dog (resp. a cat) Bold: best, underline: second best.
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Qualitative results: AFHQ
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Figure 4. Comparison of image restorations. Samples taken from AFHQ-512. Prompts: a sharp photo of a dog (resp. a cat).

Deblur (Gaussian) SR×16

Method NFE↓ FID↓ PSNR↑ FID↓ PSNR↑
LATINO-PRO 68 18.37 26.82 30.40 21.52
LATINO 8 20.03 26.25 42.14 20.05
P2L [7] 2000 85.80 20.96 121.7 19.99
TReg [22] 200 35.47 21.13 37.13 19.60
LDPS 1000 64.88 22.60 101.13 17.34
PSLD [45] 1000 125.5 20.52 113.4 16.48

Table 1. Results for Gaussian Deblurring with σ = 5.0, and ×16
super-resolution, both with noise σy = 0.01 on the AFHQ-512 val
dataset. Our LATINO and LATINO-PRO models are compared to
recent state-of-the-art methods. Prompts: a sharp photo of
a dog (resp. a cat) Bold: best, underline: second best.

consider various types of Super-Resolution tests, ranging461
from ×8 upscaling with the average pooling kernel to ×16462
upscaling with the bicubic interpolation kernel. We add a463
white noise of intensity σn = 0.01 to all our tests. We also464
add in appendix K harder problem settings, providing visual465
results to show the effectiveness of our algorithms.466

Evaluation on inverse problems tasks. Since the current467
SOTA methods that employ LDMs to solve inverse problems468
work only with 512× 512 resolution, whereas the pretrained469
model we use works at 1024 × 1024 resolution, we must470
adapt our model for fair comparison purposes. Indeed, when471
comparing with P2L, PSLD, LDIR and LDPS we adapt the472
inverse problems as follows:473
1. Super-resolution ×8 becomes ×16 (×16 becomes ×32),474

so the image fed to the algorithm always has the same475
size, i.e. 64× 64. The output of our model is then down-476
sampled to 512× 512. More details in Appendix C.2.477

2. The Deblurring task is converted into a simultaneous478
super-resolution and Deblurring problem since we first479
have to downsample the clean image x to 512× 512 and480
then apply the actual blur operator A. The formal details481

of this specific case are illustrated in Appendix C.1. 482
483

In Appendix J we also provide visual results and FID, PSNR, 484
and LPIPS metrics for the FFHQ1024 case, allowing fu- 485
ture work that will handle this resolution to be compared 486
with our results. We can see from Table 1 and Table 2 how 487
both our LATINO and LATINO-PRO models have similar 488
performances compared to current SOTA, if not even bet- 489
ter in terms of PSNR and LPIPS. Especially on the AFHQ 490
dataset, we can beat all the SOTA methods in all the metrics 491
considered. On the FFHQ dataset we can beat SOTA in 492
most cases. Importantly, we can see a huge gain in terms of 493
NFEs. Furthermore, LATINO requires around only 13 Gb of 494
GPU memory to run, thanks to the absence of any gradient 495
computation in the steps (more details on memory and time 496
consumption in Appendix D). Considering that the DMD2 497
prior takes around 10.7Gb, the overhead is minimum. Fig- 498
ures 4 and 5 show a qualitative comparison of the methods 499
proposed against common latent DIS like LDPS, PSLD and 500
P2L. A direct visual comparison with TReg is not possible 501
due to the unavailability of the source code, but we refer 502
to the TReg original work [22] to compare on the AFHQ 503
dataset with both algorithms, as done in Appendix H. 504

Prompt Optimization. As discussed in Section 5, we can 505
use the LATINO-PRO SAPG scheme to optimize the text 506
prompt c. This greatly improves accuracy, both when the 507
prompt is already partially aligned with the image and when 508
it is misleading, as shown in Table 6 in the Appendix G. 509
We initialize the prompt c by concatenating two strings, a 510
fixed string a sharp photo of whose tokens will re- 511
main frozen, plus a descriptive string, e.g. a dog, which is 512
updated via SAPG updates. The hyperparameters used are 513
M = 15, C = B(c0, 15), and γm = 0.1 · 0.9max(0,m−10). 514

Tables 1 and 2 show that LATINO-PRO can significantly 515
outperform LATINO, with a computational cost that re- 516

7

Figure: Results for Gaussian Deblurring with σ = 5.0, and ×16 super-resolution, both with noise σy = 0.01 on the
AFHQ-512 val dataset. Our LATINO and LATINO-PRO models are compared to recent state-of-the-art methods.
Prompts: a sharp photo of a dog (resp. a cat).
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Quantitative results: FFHQ

Deblur (Gaussian) Deblur (Motion) SR×8
Method NFE↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓ FID↓ PSNR↑ LPIPS↓
LATINO-PRO 68 31.98 29.11 0.292 27.80 27.14 0.301 40.95 26.58 0.355
LATINO 8 33.94 28.95 0.296 29.17 26.88 0.318 37.13 26.22 0.356
P2L [3] 2000 30.62 26.97 0.299 28.34 27.23 0.302 31.23 28.55 0.290
LDPS 1000 45.89 27.82 0.334 58.66 26.19 0.382 36.81 28.78 0.292
PSLD [6] 1000 41.04 28.47 0.320 47.71 27.05 0.348 36.93 26.62 0.335
LDIR [4] 1000 35.61 25.75 0.341 24.40 24.40 0.376 36.04 25.79 0.345

Table: Results for Gaussian deblurring with σ = 3.0, motion deblurring, and ×8 super-resolution, all with noise
σy = 0.01 on the FFHQ-512 val dataset. Our LATINO and LATINO-PRO models are compared to recent
state-of-the-art methods. Prompt: a sharp photo of a face. Bold: best, underline: second best.
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Qualitative results: Food101 dataset
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Figure 12. Visual results of the 8-steps LATINO on Food101 dataset for semantic shift task.
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Figure: Qualitative results of the 8-steps LATINO on Food101 dataset [1] for semantic shift task
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Prompt tuning: experimental resultsICCV
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Figure 8. Effect of prompt optimization on the AFHQ-dogs val dataset. Initial prompt: a sharp photo of a cat.

Figure 9. Metrics evolution during LATINO-PRO iterations for the example in Figure 8. Initial prompt: a sharp photo of a cat.
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Figure 10. Effect of prompt optimization on the AFHQ-dogs val dataset. Initial prompt: a sharp photo of a dog.
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Figure: Metrics evolution during LATINO-PRO iterations. Initial prompt: a sharp photo of a cat.
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Prompt tuning: experimental results
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Memory and time consumption

We provide an exhaustive comparison of our models with respect to current SOTA in terms of memory
consumption and time needed. For algorithms TReg and P2L for which the official code release is not available,
we implemented versions of the algorithms starting from the pseudocodes as described in [3, 5].

Method GPU (Gb) Time (s) Resolution
LATINO 13.6 5.53 10242

LATINO-PRO 23.4 48.8 10242

TReg ∼ 6.40 40.5 5122

P2L ∼ 10.6 600 5122

LDPS 9.51 176 5122

PSLD 10.3 185 5122

LDPS-XL 42.5 694 10242

PSLD-XL 46.7 1044 10242

TReg-XL ∼ 37.02 ∼ 240 10242

P2L-XL ∼ 43.3 ∼ 3122 10242

Table: GPU Memory and Time consumption comparison
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Future perspectives

Analyze the theoretical properties of LATINO and LATINO-PRO, with special attention to
non-asymptotic convergence results.

Development of strategies to automatically adjust the parameters of LATINO and LATINO-PRO.

Explore strategies for decoding the prompt embedding to reveal the optimized text prompt.

Application to blind inverse problems.
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Thank you for the attention

Thank you for the attention !
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