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Motivation

- Drawbacks of previous works in Earth System:

1. Traditional weather prediction models often struggle with exorbitant
computational expenditure and the need to continuously update forecasts as

new observations arrive.

2. For instance, the upper-air variables (e.g., temperature profiles) are sparse and
sampled via radiosondes/satellites, while the surface variable (e.g., precipitation,
wind) are dense but updated in near-real-time.

3. This asynchrony poses significant challenges: when introducing new variables
(e.g., satellite-derived aerosol data), existing models must be entirely retrained
from scratch, incurring prohibitive computational costs.
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Motivation

e Previous works & OQOurs:

1. Previous Works: Entirely retraining the whole model from scratch when new variable
comes .

2. Ours: Incrementally training limited number of parameters from the pretrained model.

- Two strategies on Forecasting: 5 _/
a) Dre_Training; I || Model (] ENEwo [
M | —
b) :{MSE Comparlson Of ZSOO' ____________ (a)PreTrmmng(b)éoi;lp;sén _____________
Full Training: e Y | 3%
L. I y Model | j | i '
d) Incremental Training; b 5 A
(c) Full-Training (d) Incremental-Training
PEILab, ICCV 2025 2025/9/9 4




Main Contribution

1. This work initiates the research on incremental learning paradigms for weather
forecasting. We propose the quantitative benchmark to evaluate the performance.

2. We present Variables-Adaptive Mixture of Experts (VA-MoE), the first framework
tailored for incremental atmospheric modeling. VA-MoE achieves expert specialization
through contextual variable activation driven by variable index embeddings, enabling
dynamic assignment of experts to variables during both training and inference.

3. Extensive experiments on the ERA5 dataset demonstrate that VA-MoE achieves
comparable performance for surface variables, while delivering superior accuracy in
upper-air variables.
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Methodology — Main Framework
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Methodology — Incremental Setting

1. The weather variables X' are divided into two sets: (i) the initial training variables at t

time Xj, € REXWXN ‘and, (ii) the incremental variables at t time Xt, € RF*W*M,

2. When new variables are incrementally introduced to the model, specialized experts
are dynamically integrated into the transformer blocks to process these variables.
The Encoder, Decoder, and the previous Experts are frozen. Only the newly-added
experts and Index Encoder are trained.
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Methodology — VAMOoE Structure

« VA-MoE introduces index embedding I
within transformer blocks, which dynamically
guides experts in learning hierarchical
relationships between atmospheric variables.

« As new variables X}, are incrementally
integrated, corresponding experts are added
to the transformer architecture and optimized
via index-based affinity assignments.
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llustration of the VA-MoE. In the left subgraph, the input features

comprise both upper-air and surface variables. The right subgraph

details CAE module.
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Methodology — Loss Function

A variable-adaptive loss function that aligns variable rates with their

Inherent spatiotemporal characteristics.

- Prediction Loss: Objpreq = (X! — X" O(X*! — X™1)/eV +w
» Reconstruction Loss:  Objecons = (X' — XHO(X' - XY)

« Joint Loss: Objtotal = Objpred + A * Objrecons
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Experiments & Results

 Dataset. In this work, we conduct
experiments on ERA5. We train the model
on 40-year dataset in the initial stage and
20-year dataset in the incremental stage.

« The right image is the comparative

analysis of RMSE across 10 models for4 £
variables, including Z500 and T850 in the
Initial stage, as well as T2M and U10 in the
Incremental stage.
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Experiments & Results

Dataset | Iteration T2M (K) | U10 (m/s) | V10 (m/s) | MSL (Pa) | SP (Pa) |
(years) (x10%) 6h 72h 120h| 6h 72h 120h| 6h 72h 120h| 6h 72h 120h| 6h 72h 120h
Plain Training
ViT* [13] 1979-2020 40 0.72 1.35 1.86| 0.66 1.98 3.01| 0.68 2.02 3.11| 40.2 208.5 393.9| 63.3 222.1 397.0
IFS [32] 1979-2020 40 1.09 1.38 1.74| 0.96 1.87 2.78| 0.99 1.93 2.87| - - - - - -
Pangu-Weather [3]| 1979-2020 40 0.82 1.09 1.53| 0.77 1.63 2.54| 0.79 1.68 2.65| - - - - - -
FourCastNet [22] | 1979-2020 40 0.82 1.02 1.77| 0.82 2.08 3.34| 0.84 2.11 341 | - - - - - -
ClimaX [27] 1979-2020 40 1.11 147 1.83| 1.04 2.02 2.79| - - - - - - - - -
Graphcast [23] 1979-2020 40 0.51 094 137 0.38 1.51 2.37| - - - | 234 135.2 278.2| - - -
Fengwu [9] 1979-2020 40 0.58 1.03 141| 042 1.53 2.32| - - - | 23.2 137.1 276.9| - - -
FuXi [10] 1979-2020 40 0.55 099 141| 042 1.50 2.36| 0.43 1.54 2.44| 27.2 136.7 2829| - - -
VA-MoE 1979-2020 | 40 | 0.57 1.03 1.42| 043 1.41 2.25| 0.44 1.46 2.34| 27.5 131.1 275.9| 57.1 168.9 302.4
Incremental Training from 65 Upper-Air Variables (79-20) to 5 Surface Variables (79-20)
VA-MoE (IL) 1979-2020 ] 20 ] 0.58 1.05 1.45] 0.48 1.47 2.33] 047 1.54 2.41| 279 131.3 281.6\ 59.3 1734 3124
Incremental Training from 65 Upper-Air Variables (79-20) to S Surface Variables (00-20)
VA-MoE (IL) 2000-2020 | 10 ] 073 117 1.57\ 0.54 1.58 2.49\ 0.55 1.63 2.57| 30.0 148.8 304.7\ 60.6 1714 314.8

Prediction performances on Incremental Training with 5 surface variables, i.e., T2M, U10, V10, MSL, and SP.
* denotes running by ourselves. All experiments are in 0.25°with 721 x 1440 resolutions.
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Experiments & Results

Para. Z500(m? /s%) | Q500(xe™ %, g/kg) | Us00(m/s) | V500(m/s) | TSOK) L
(M) | 6h 72h  120h | 6h 72h 120h 6h 72h 120h | 6h 72h 120h | 6h 72h 120h
IFS [32] - 28.31 154.08 33396 | 031 0.61 0.75 143 323 5.12 1.40 358 5.64 0.36 098 1.70
Pangu-Weather [3]] - 24 88 16790 391.26 | 0.25 0.55 0.69 0.96 3.13 473 091 352 5.5 027 094 1.56
Graphcast [23] - 15.23 12542 27535 - - - 0.77 286 449 0.74 292 4.67 0.23 0.87 148
VA-MoE | 665 | 19.28 134.63 295.52| 0.17 049 0.62 | 0.84 299 471 | 0.84 3.04 4389 | 025 076 1.36
Incremental Training from 65 Upper-Air Variables (79-20) to 5 Surface Variables (00-20)
VA-MoE (IL) | 137 | 18.23 133.14 292.63 | 0.17 049 061 | 0.84 301 474 | 0.84 351 493 | 025 076 1.37
Prediction performances on Initial Training with 5 upper-air variables.
Para.|  Z500 (m*/s%) | Q500 (xe %, g/kg) L | US00 (m/s) L V3500 (m/s) | TS00 (K) |
(My| 6h  72h 120h | 6h 72h  120h 6h 72h 120h | 6h 72h 120h | 6h 72h 120h
ViT*[13] 307 | 33.38 209.4 517.81 | 0.22 0.61 1.06 | 124 3.66 6.52 1.22 3.76 741 042 118 240
ViT+MoE (light)*[30]| 609 | 37.92 207.11 405.73 | 022 0.60 078 | 1.30 3.84 587 1.27 389 6.11 046 123 2.02
ViT+MoE*[30] 1113| 28.31 169.61 356.02| 0.23 0.56 0.72 | 1.21 346 544 1.23 354 569 | 035 1.07 1.83
VA-MoE 665 | 20.59 139.02 302.13| 0.18 049 062 | 091 3.02 476 | 091 3.08 497 | 027 092 159
VA-MoE (IL) 137 | 20.29 138.52 301.41 | 0.18 050 063 | 091 3.04 479 | 091 3.10 503 | 027 093 1.60

Architectural impact on 5 upper-air variables under 500 hPa. All experiments are with 128 x 256 resolutions.

PEILab, ICCV 2025

2025/9/9

12



Experiments & Results
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6-hour visualization of upper-air and surface variables.
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Conclusion

« Our work: In this work, we proposed incremental weather forecasting, a
novel task that addresses the challenge of dynamically expanding weather

models to incorporate new variables without retraining from scratch.

« Limitation: This work incrementally transforms the upper-air model to
surface variables. It might be more meaningful to test the model's
performance on larger datasets and in a wider range of scenarios, for

Instance, extending the atmospheric model to the ocean and soil.
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