

DeepMesh: Auto-Regressive Artist-mesh Creation with Reinforcement Learning

<https://zhaorw02.github.io/DeepMesh/>

Ruowen Zhao^{*1,3} Junliang Ye^{*1,3} Zhengyi Wang^{*1,3}

Guangce Liu³ Yiwen Chen² Yikai Wang¹ and Jun Zhu^{†1,3}

¹Tsinghua University ²Nanyang Technological University ³ShengShu

(*Equal Contribution †Corresponding Author)

Motivation

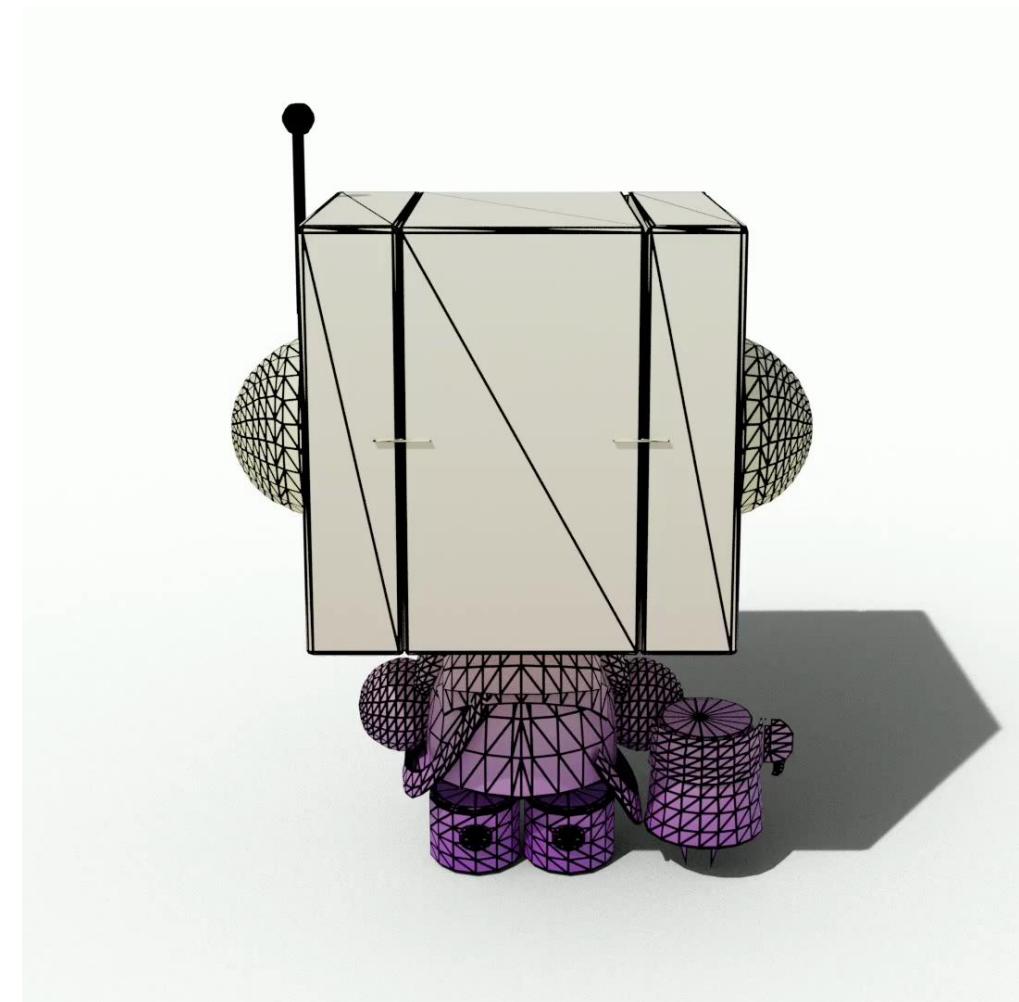
Meshy ai

Rodin

- Dense meshes with poor topology
- overly irregular structures
- Not suitable for downstream applications

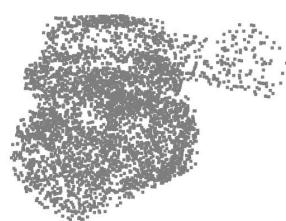
Motivation

- Artist-created mesh has more optimal topology
- Suitable for downstream applications such as editing and rendering



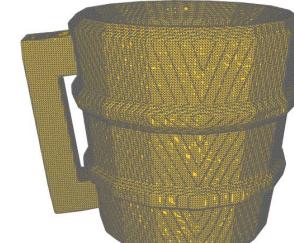
Previous method

- Existing methods learn to autoregressively predict mesh vertices and faces, preserving the structured and artistically optimized topology.



Point Cloud

NeRF

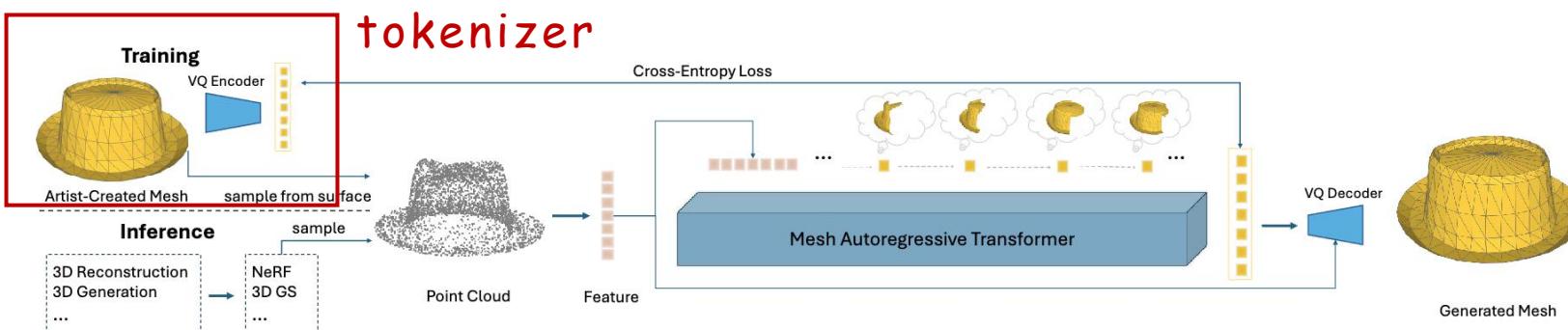


Dense Mesh

3D GS

Image

A commode



MeshAnything's pipeline

Text
MeshAnything

Challenges

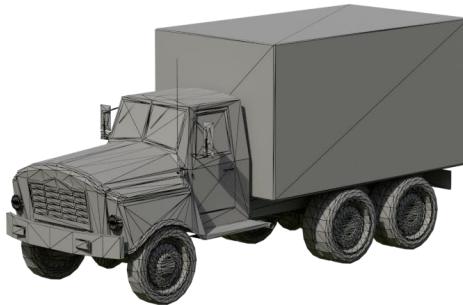
- Inefficient tokenizer

More efficient tokenizer

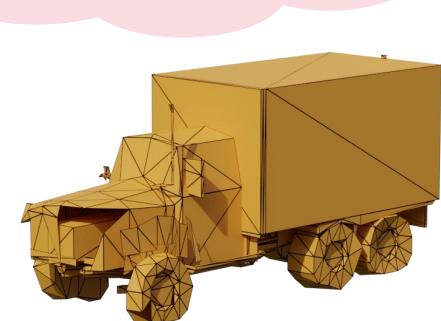
- Native tokenization: 1 triangular face → (x,y,z) coordinates for 3 vertices → 9 tokens
- AMT and EdgeRunner: compression rate of 46%, still long sequences
- BPT: compression rate of 74% but 4w+ vocab size for 512 resolution

- Incomplete geometry

RL post-training

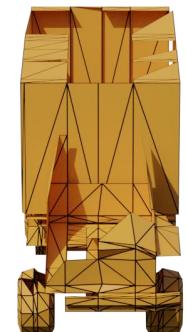


Original mesh

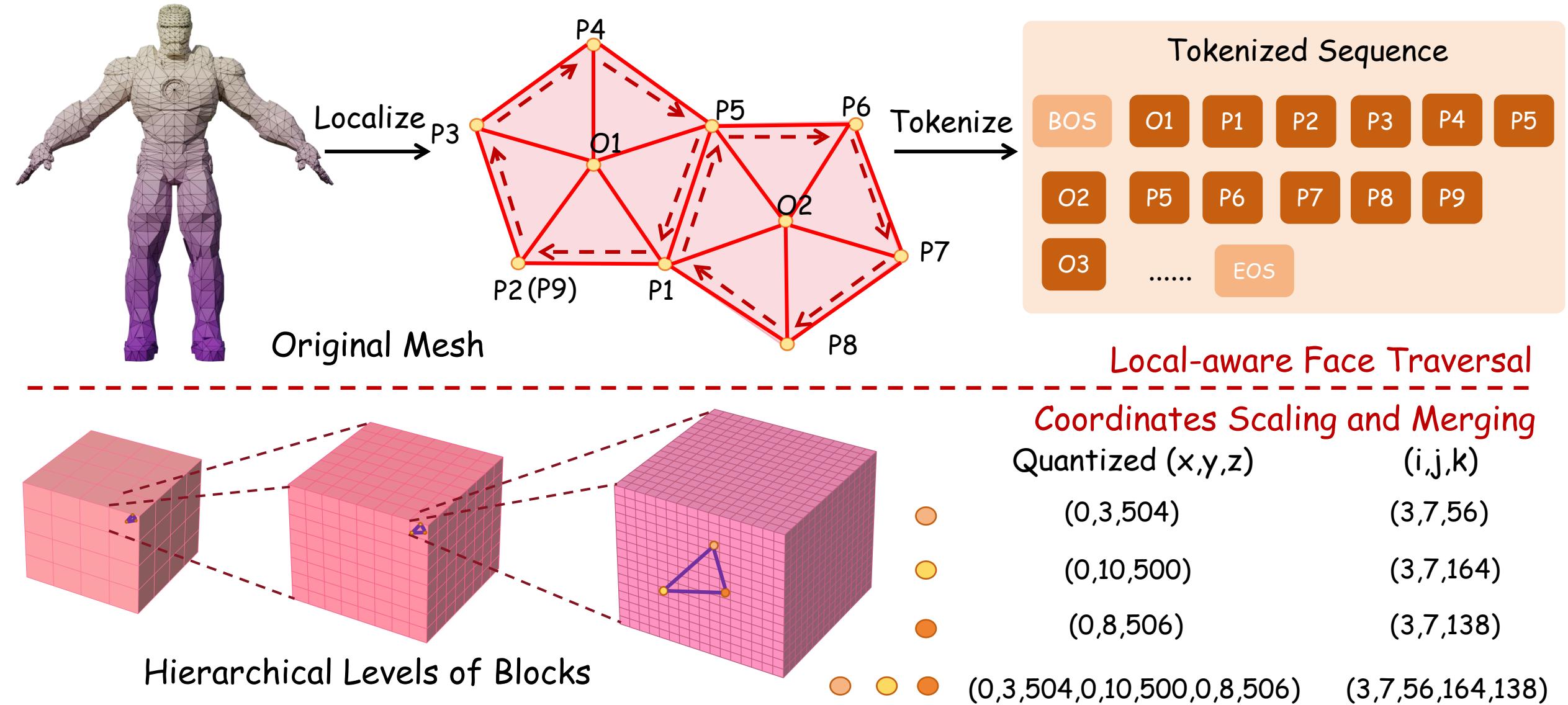


MeshAnythingv2

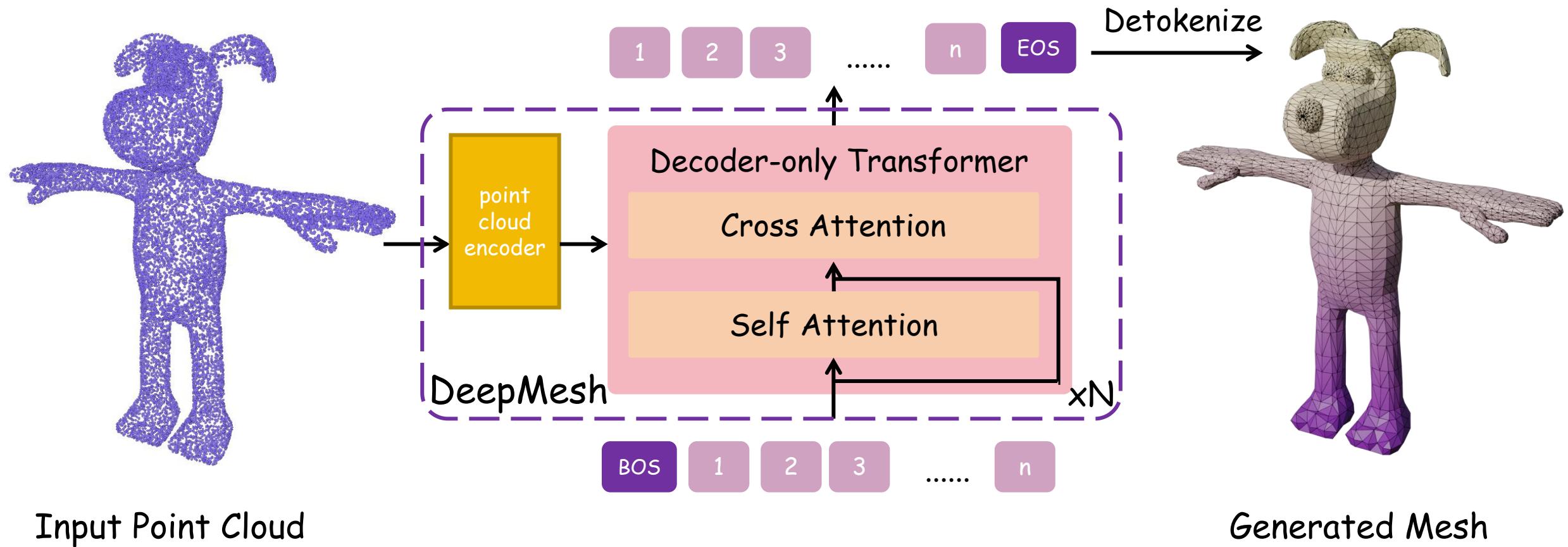
BPT



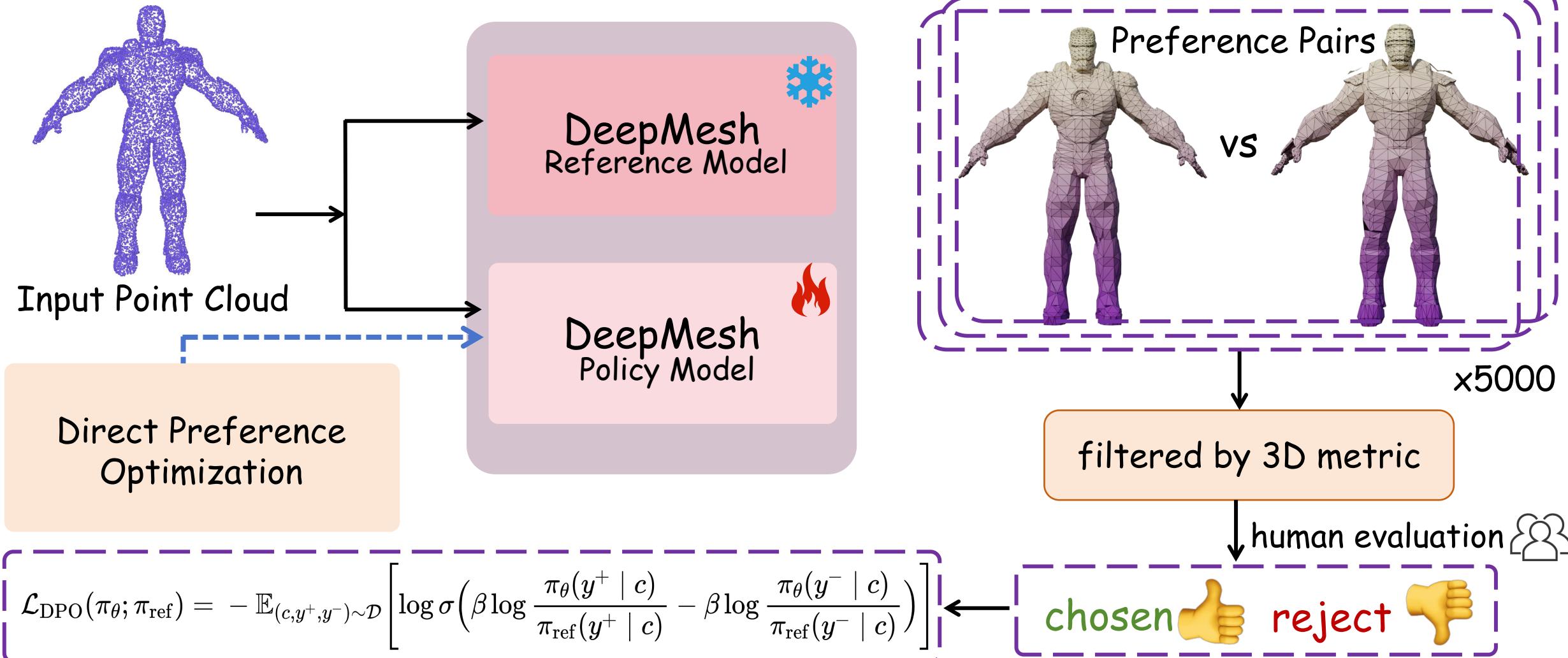
Our tokenizer



Pre-training architecture



DPO reinforcement learning



How to build DPO dataset

Chosen

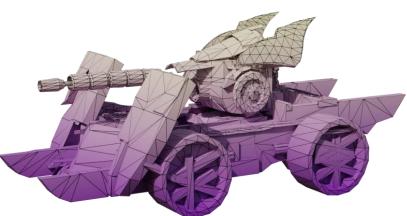
Reject

Chosen

Reject

Chosen

Reject

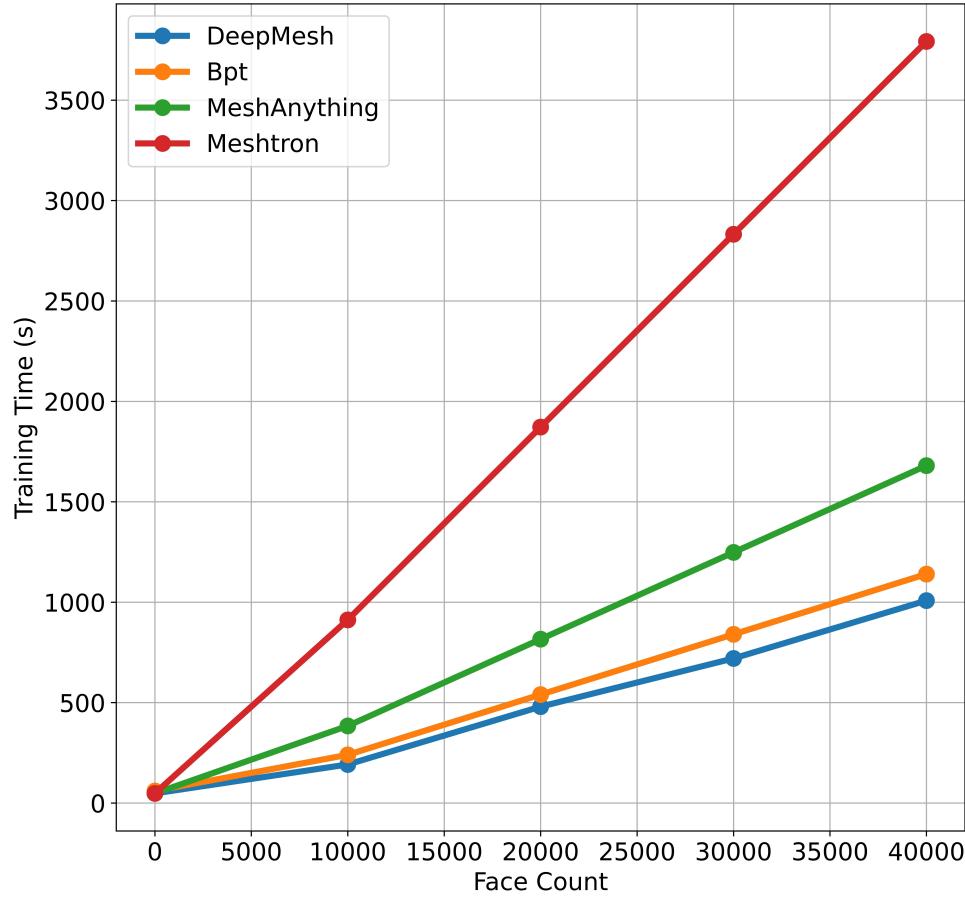


Geometry Completeness

Surface Details

Wireframe Structure

Expeiments



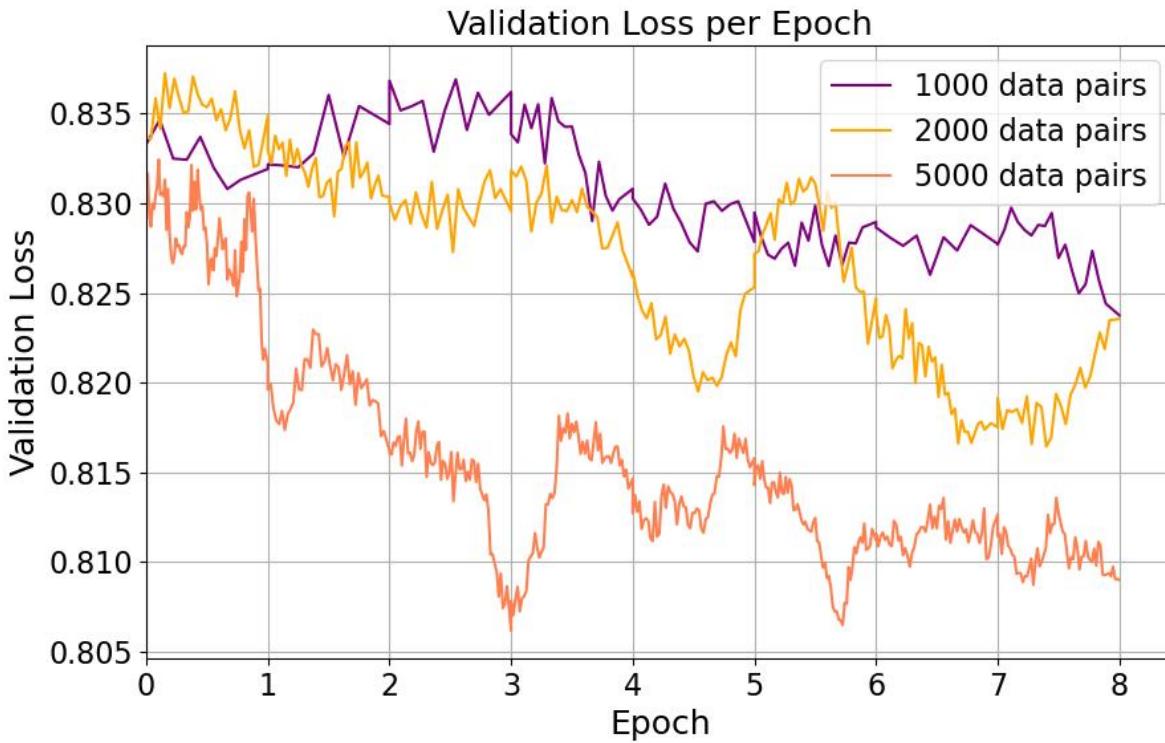
Metrics	C.Dist. ↓	H.Dist. ↓	User Study ↑
MeshAnythingv2 [6]	0.1249	0.2991	10%
BPT [67]	0.1425	0.2796	19%
Ours w/o DPO	0.1001	0.1861	34%
Ours w DPO	0.0884	0.1708	37%

Better generation results

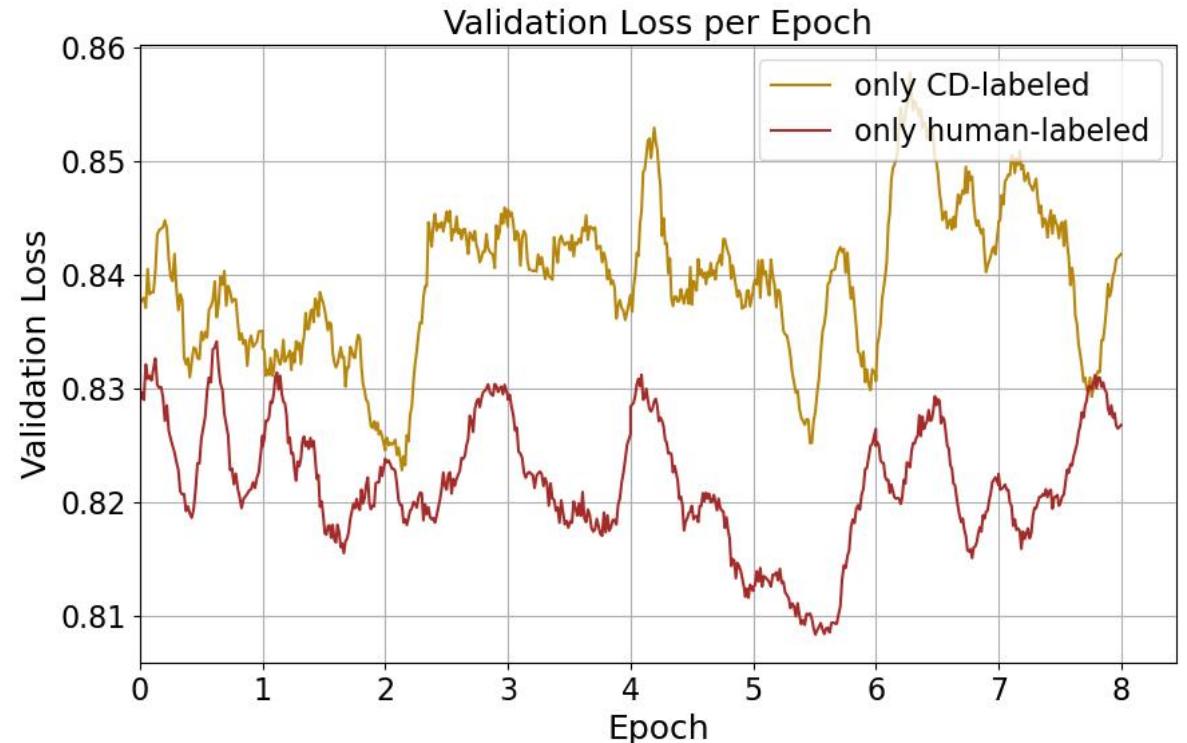
Metrics	AMT	EdgeRunner	BPT	Ours
Comp Ratio ↓	0.46	0.47	0.26	0.28
Vocal Size ↓	512	512	40960	4736
Time (s) ↓	816	-	540	480

More efficient tokenizer

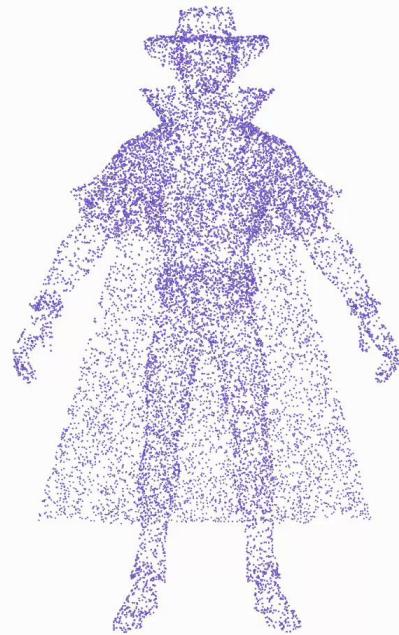
Expeiments



Scaling up data pairs leads to greater reductions in validation loss, indicating better DPO generalization.



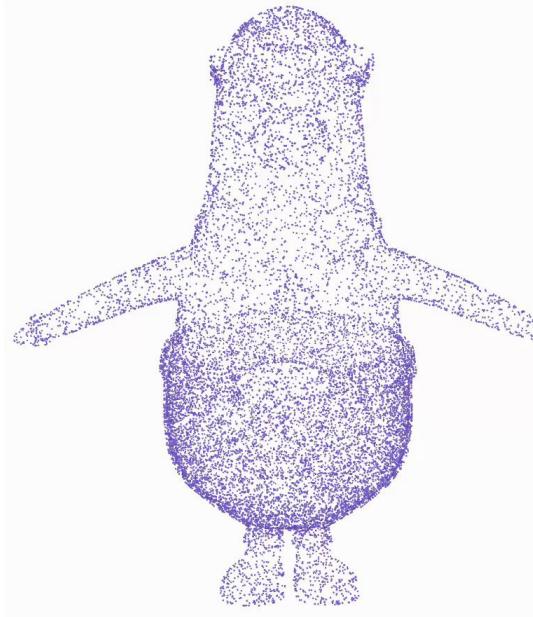
Post-training on human-labeled data yields lower validation loss, highlighting the necessity of human-annotation beyond geometric metrics.



Point Cloud

DeepMesh

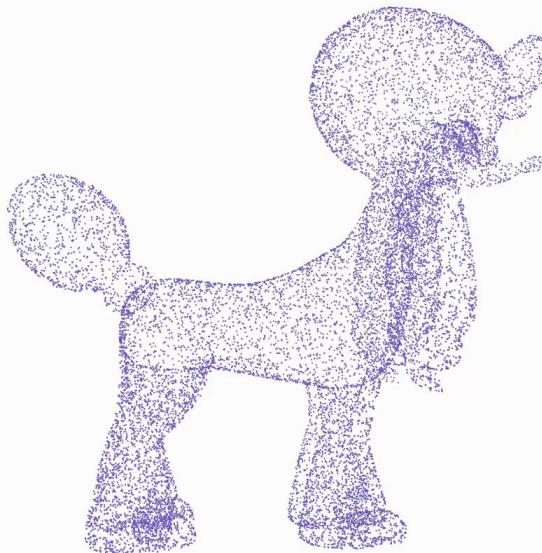
Generated Mesh and Its Generation Process



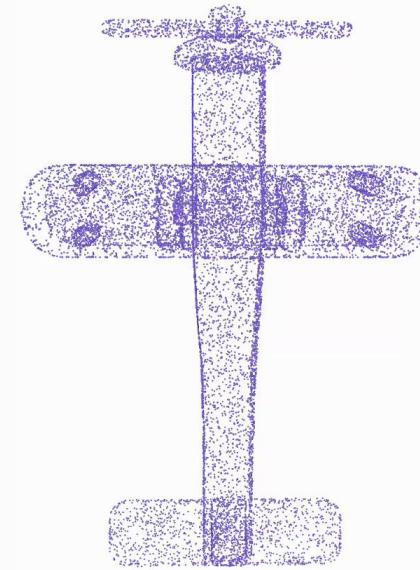
Point Cloud

DeepMesh

Generated Mesh and Its Generation Process

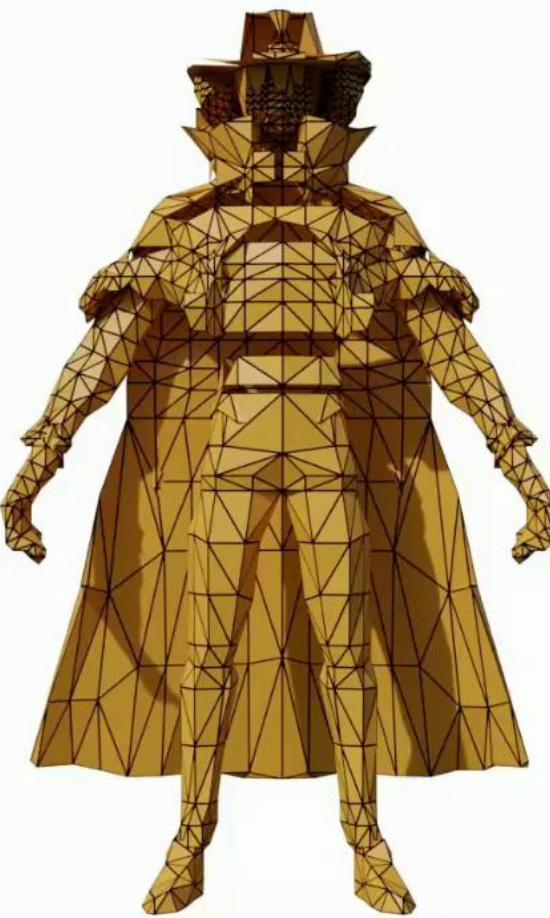


DeepMesh

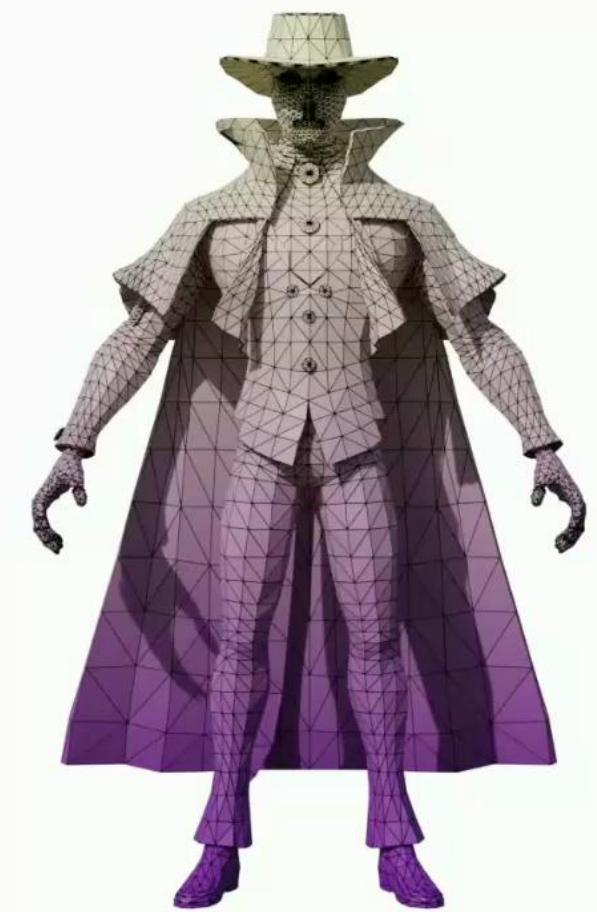


DeepMesh

MeshAnythingv2



BPT



DeepMesh (ours)

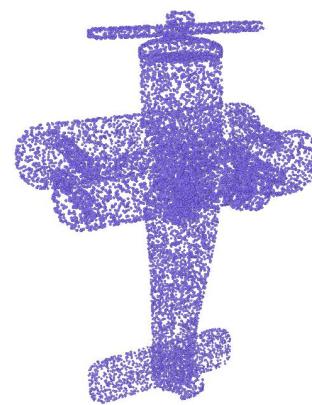
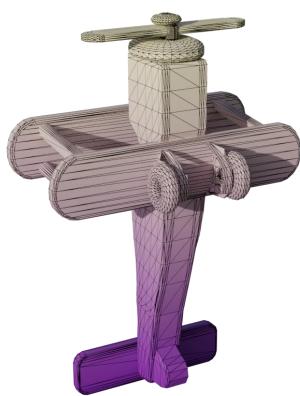
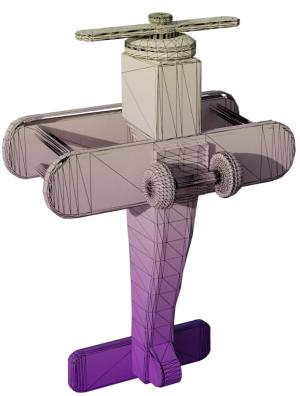
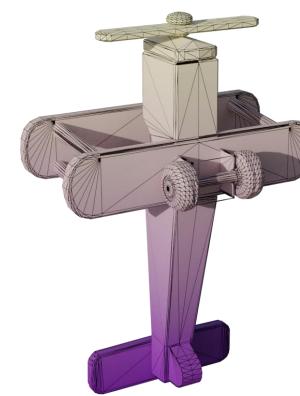
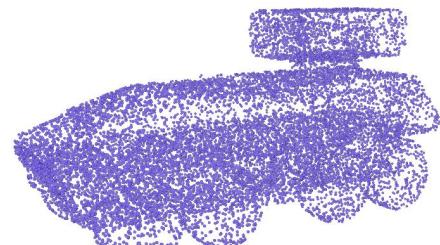
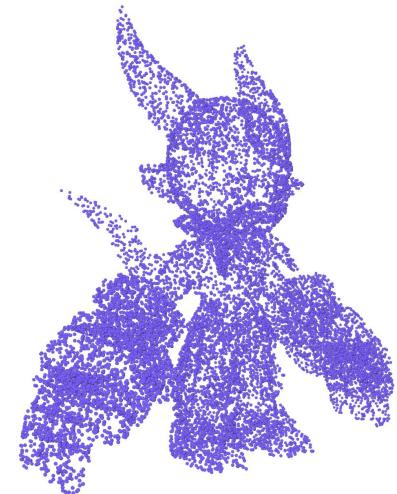
MeshAnythingv2

BPT

DeepMesh (ours)

Point Cloud

Our Diverse Results



Thank you

Project page: <https://zhaorw02.github.io/DeepMesh/>