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Motivation

Decorated red horse with horn.
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e Dense meshes with poor
topology

e overly irregular structures

e Not suitable for downstream
applications
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Motivation

e Artist-created mesh has more optimal
topology

e Suitable for downstream applications such
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as editing and rendering
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Previous method

Point Cloud Dense Mesh

e Existing methods learn to autoregressively
predict mesh vertices and faces, preserving
the structured and artistically optimized

topology.

NeRF 3D GS

e Two stage pipeline: a mesh tokenizer and A commode

training an autoregressive transformer

Image Text
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Artist-Created Mesh sample from sufface

3D Generation | — |3DGS | Point Cloud Feature

Generated Mesh

MeshAnything's pipeline



Challenges

More efficient

e Tnefficent tokenizer tokenizer

» Native tokenization: 1 triangular face — (x,y,z) coordinates for 3 vertices — 9 tokens
» AMT and EdgeRunner: compression rate of 46%, still long sequences

> BPT: compression rate of 74% but 4w+ vocab size for 512 resolution

e Incomplete geometry RL post-training

Original mesh MeshAnythingv2 BPT



Our tokenizer

Tokenized Sequence
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Original Mesh P8 Local-aware Face Traversal

Coordinates Scaling and Merging

Quantized (x,y,z) (i,j.k)
@ (0,3,504) (3,7,56)
O (0,10,500) (3,7.164)
O (0,8,506) (3,7,138)

© O @& (0,3504,0,10500,0,8506) (3,756,164,138)



Pre- training architecture

Detokenize
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Decoder-only Transformer

Cross Attention
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DPO reinforcement learni
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How to build DPO dataset

Chosen

Geometry Completeness Surface Details Wireframe Structure



Expeiments
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Face Count

Metrics C.Dist. | H.Dist. | User Study 1
MeshAnythingv2 [6]  0.1249 0.2991 10%
BPT [67] 0.1425 0.2796 19%
Ours w/o DPO 0.1001 0.1861 34%
Ours w DPO 0.0884 0.1708 37 %

Better generation results

Metrics AMT EdgeRunner BPT  Ours
Comp Ratio | 0.46 0.47 026 0.8
Vocal Size | _ 512 512 _ 40960 _4736
€ |Time (5) | 816 i 540 480,

More efficient tokenizer



Validation Loss

Expeiments

Validation Loss per Epoch

—— 1000 data pairs
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Scaling up data pairs leads

to greater

reductions in validation loss, indicating

better DPO generalization.

Validation Loss

0.86

0.85 1

0.84 4

0.83 1

0.82 1

0.81 1

Vali_dation Loss per Epoch_

—— only CD-labeled
—— only human-labeled

1 2 3 4 5 6 7 8
Epoch
Post-training on human-labeled data yields
lower validation loss, highlighting the
necessity of human-annotation beyond
geometric metrics.




DeepMesh DeepMesh
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Point Cloud Generated Mesh and Its Generation Process Generated Mesh and Its Generation Proc:
RIS
DeepMesh DeepMesh
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MeshAnythingv2 BPT DeepMesh (ours)



MeshAnythingv2 BPT DeepMesh (ours)



Point Cloud Our Diverse Results
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Thank you

Project page: https://zhaorw02.github.io/DeepMesh/
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