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Problem Motivation

Dynamic Environments Demand 
Incremental Learning:
❑ Autonomous vehicles must recognize 

new road signs, vehicles, and objects 
under varying weather, lighting, and city 
conditions. 

❑ Similarly, surveillance systems must 
detect new objects, threats, or 
anomalies in changing environments. 

Challenges in Traditional Object 
Detection:
❑ Trained once on a fixed dataset → Fails 

in new environments (domain shift)
❑ New objects emerge over time → 

Cannot recognize unseen classes 
(class shift)

❑ Retraining from scratch is 
computationally expensive and 
impractical.

Source: AI generated video (using Veo)



Limitations of existing approaches

Class Incremental Object Detection (CIOD)
 Learns new object classes (𝐶1  →  𝐶2)
 Fails in unseen domains (𝐷1  ≠  𝐷2)
 Suffers from catastrophic forgetting in new 

environments

Domain Incremental Object Detection (DIOD)
 Adapts to new domains (𝐷1  →  𝐷2)
 Cannot detect new object classes (𝐶1  ≠  𝐶2) 
 Suffers from catastrophic forgetting when 

adapting to new object categories



Dual Incremental Object Detection (DuIOD)

We present a new paradigm in object detection literature that requires object detectors to:

 Incrementally learn new object categories: (𝐶1  →  𝐶2 →  𝐶3 →  ⋯ 𝐶𝑇)

 Simultaneously adapt to unseen domains: (𝐷1  →  𝐷2 →  𝐷3 →  ⋯ 𝐷𝑇)

 Learn in an Exemplar-Free manner, without access to previously seen training data.



Problem Formulation: Defining DuIOD

Key Requirements to setup DuIOD:
The model must detect objects from all learned classes across all encountered domains. 
It must prevent catastrophic forgetting while generalizing to new environmental conditions. 
Exemplar-Free Constraint: the model should not store previous task data for retraining. 

Formal Problem Definition:
Let 𝑇 = {𝑇1, 𝑇2, ⋯ 𝑇𝑇} represent a sequence of tasks where:
❑ Each task 𝑇𝑡 introduces a new set of object classes 𝐶𝑡 from a novel domain 𝐷𝑡 .
❑ The cumulative set of all classes and domains encountered up to task 𝑇𝑡 is: 

𝐶1:𝑡  =  ራ

𝑗=1

𝑡

𝐶𝑗 , 𝐷1:𝑡  =  ራ

𝑗=1

𝑡

𝐷𝑗

❑ Our objective is to incrementally update the object detection model 𝑀𝜃𝑡
, parameterized by 𝜃𝑡, using only 

data from 𝐷𝑡, ensuring that 𝑀𝜃𝑡
 can accurately detect objects from all learned classes 𝐶1:𝑡 across all 

encountered domains 𝐷1:𝑡.



A quick look at the DuET framework!



Building up the DuET Framework
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DuET Module & Incremental Head

❑ DuET Module fuses task vectors on shared weights. It 
merges past and current task vectors dynamically using 
layer-wise retention 𝛼𝑙  and adaptation 𝛽𝑙  factors, 
effectively mitigating catastrophic forgetting.

𝜏𝑜𝑙𝑑 =  𝜃𝑠𝑡−1
−  𝜃𝑠0

 ,  𝜏𝑐𝑢𝑟𝑟 =  𝜃𝑠𝑡
−  𝜃𝑠0

❑ For each layer, 𝑙 ∈ 1, 2, ⋯ 𝐿 , we define a p-factor:

𝑝𝑙 =
𝜏𝑜𝑙𝑑

𝑙 − 𝜏𝑐𝑢𝑟𝑟
𝑙

𝜏𝑜𝑙𝑑
𝑙  +  𝜏𝑐𝑢𝑟𝑟

𝑙  + 𝜀

𝛿𝑙 = 𝛾 tanh 𝑝𝑙

𝛼𝑙 = 𝛼𝑏𝑎𝑠𝑒 + 𝑐𝑙𝑎𝑚𝑝 𝛿𝑙, −𝛾, 𝛾 ,  𝛽𝑙 = 1 − 𝛼𝑙 

𝜃𝑠𝑡
𝑙

𝑖𝑛𝑐𝑟𝑒
= 𝜃𝑠0

𝑙 + 𝛼𝑙 𝜏𝑜𝑙𝑑
𝑙 +  𝛽𝑙 𝜏𝑐𝑢𝑟𝑟

𝑙

❑ Applying this across all layers yields 𝜃𝑠𝑡 𝑖𝑛𝑐𝑟𝑒
 as shown.

❑ Incremental Head concatenates task-specific parameters 
from past and current tasks, thereby enhancing model’s 
generalization across diverse detection domains.

𝜃𝜏𝑡 𝑖𝑛𝑐𝑟𝑒
← 𝜃𝜏𝑡

 ; 𝜃𝜏𝑡−1 𝑖𝑛𝑐𝑟𝑒



Loss Objectives

❑ For the base task 𝑡 = 1 , we optimize the object detector using the standard detection loss, 
ℒ𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟  ,which is specific to the base detector and is responsible for object localization and classification.

𝜃1 ← 𝜃0 − 𝜂 ∙ ∇𝜃ℒ𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟

❑ For incremental tasks 𝑡 ≥ 2 , we augment ℒ𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟  with a modified Distillation Loss (ℒ𝐷𝑖𝑠𝑡𝑖𝑙𝑙
∗ ) that also 

filters low confidence classification predictions and high variance bounding box predictions from the old 
model, along with our Directional Consistency Loss (ℒ𝐷𝐶) scaled by scaling coefficients 
𝜆𝐷𝑖𝑠𝑡𝑖𝑙𝑙  & 𝜆𝐷𝐶  respectively.

ℒ𝑇𝑜𝑡𝑎𝑙 = ቊ
ℒ𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟 ,  𝑡 = 1

ℒ𝐷𝑒𝑡𝑒𝑐𝑡𝑜𝑟  + 𝜆𝐷𝑖𝑠𝑡𝑖𝑙𝑙ℒ𝐷𝑖𝑠𝑡𝑖𝑙𝑙
∗ + 𝜆𝐷𝐶ℒ𝐷𝐶  𝑡 ≥ 2

𝜃𝑡 ← 𝜃𝑡−1 − 𝜂 ∙ ∇𝜃ℒ𝑇𝑜𝑡𝑎𝑙



Directional Consistency Loss

❑ Incremental learning suffers from conflicting weight updates during model-merging [1], which can 
destabilize the merging of shared parameters.

❑ We introduce the Directional Consistency Loss (ℒ𝐷𝐶) to address this. This loss penalizes updates in the 
shared parameter space that diverge in direction relative to previous incremental changes, thus promoting 
a consistent evolution of the shared task vectors.

❑ Specifically, for 𝑡 ≥ 2  we define the DC Loss between consecutive tasks 𝑡 & 𝑡 − 1 as:

ℒ𝐷𝐶 =  ෍

𝑖 𝜖 𝜃𝑠

𝑅𝑒𝐿𝑈 −((𝜏𝑠𝑡

𝑖
− 𝜏𝑠𝑡−1

𝑖
) ∙ 𝜏𝑠𝑡−1

𝑖
− 𝜏𝑠𝑡−2

𝑖

[1] Yadav, P., Tam, D., Choshen, L., Raffel, C. A., & Bansal, M. (2023). Ties-merging: Resolving interference when 
merging models. Advances in Neural Information Processing Systems, 36, 7093-7115..

❑ ℒ𝐷𝐶  effectively reduces catastrophic forgetting by stabilizing 
weight updates.

❑ ℒ𝐷𝐶  remains object detector-agnostic – can be applied to 
different detection backbones.



Datasets: Pascal Series

Pascal Series Datasets Statistics

Dataset Total 
Classes

Train 
Images

Val 
Images

Pascal VOC [1] 20 16551 4952
Clipart [2] 20 500 500

Watercolor [2] 6 1000 1000
Comic [2] 6 1000 1000

[1] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual 
object classes (voc) challenge. International journal of computer vision, 88, 303-338.
[2] Inoue, N., Furuta, R., Yamasaki, T., & Aizawa, K. (2018). Cross-domain weakly-supervised object 
detection through progressive domain adaptation. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 5001-5009).

Class ID Class Name
Domains

Watercolor Comic Clipart VOC
1 bicycle
2 bird
3 car
4 cat
5 dog
6 person
7 aeroplane
8 boat
9 bottle

10 bus
11 chair
12 cow
13 diningtable
14 horse
15 motorbike
16 pottedplant
17 sheep
18 sofa
19 train
20 tvmonitor

7

7

3

3



Datasets: Diverse Weather Series

Diverse Weather Series Datasets Statistics

Dataset Total 
Classes

Train 
Images

Val 
Images

Daytime-Sunny [1] 7 19317 8289

Night-Sunny [1] 7 25868 7756

Daytime-Foggy [2] 7 1829 688

Class 
ID

Class 
Name

Domains
Daytime

Sunny
Night
Sunny

Daytime
Foggy

Night
Rainy

Dusk
Rainy

1 bus
2 bike
3 car
4 motor
5 person
6 rider
7 truck

2

2

3

[1] Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., ... & Darrell, T. (2020). Bdd100k: A diverse driving 
dataset for heterogeneous multitask learning. In Proceedings of the IEEE/CVF conference on computer 
vision and pattern recognition (pp. 2636-2645).
[2] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., ... & Schiele, B. (2016). The 
cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on 
computer vision and pattern recognition (pp. 3213-3223).



Proposed Evaluation Metrics

❑ Since DuIOD goes beyond preserving old knowledge (retention), it also demands evaluating how well the 
model can adapt to unseen categories that emerge within known domains (adaptability).

❑ To address this requirement, we introduce the Retention-Adaptability Index (RAI), which is defined as the 
mean of the Average Retention Index (Avg RI) and the Average Generalization Index (Avg GI).

𝑅𝐴𝐼 =
𝐴𝑣𝑔 𝑅𝐼 + 𝐴𝑣𝑔 𝐺𝐼

2
❑ For each domain 𝐷𝑖  corresponding to task 𝑇𝑖  where 𝑖 ∈ 1, 2, ⋯ 𝑇 − 1 , we define Retention Index 

as 𝑅𝐼𝐷𝑖
 and calculate Avg RI as:

𝑅𝐼𝐷𝑖
 =

𝑚𝐴𝑃𝑜𝑙𝑑
𝑇𝑇  (𝐷𝑖 𝐶𝑖 )

𝑚𝐴𝑃𝑛𝑒𝑤
𝑇𝑖 (𝐷𝑖 𝐶𝑖 )

, 𝐴𝑣𝑔 𝑅𝐼 =
1

𝑇 − 1
෍

𝑖=1

𝑇−1

𝑅𝐼𝐷𝑖

❑ Similarly, for a given domain 𝐷𝑖  at task 𝑇𝑗, we define Generalization Index as 𝐺𝐼𝐷𝑖,𝑇𝑗
 and calculate Avg GI as:

𝐺𝐼𝐷𝑖,𝑇𝑗
=

𝑚𝐴𝑃𝑢𝑛𝑠𝑒𝑒𝑛

𝑇𝑗  (𝐷𝑖 𝐶𝑢𝑛𝑠𝑒𝑒𝑛 )

𝑚𝐴𝑃𝑟𝑒𝑓 (𝐷𝑖 𝐶𝑢𝑛𝑠𝑒𝑒𝑛 )
, 𝐴𝑣𝑔 𝐺𝐼 =

1

𝑁
෍

(𝐷𝑖,𝑇𝑗)

𝐺𝐼𝐷𝑖,𝑇𝑗

❑ Significance: A higher Avg RI implies better retention of past knowledge while lower values indicate 
catastrophic forgetting. Similarly, Avg GI quantifies the model's ability to generalize to unseen classes 
across all encountered domains so far and a higher value of Avg GI indicates better generalization.



Quantitative Results

❑ On an average, DuET achieves an RAI improvement of +9.82% and +13.12% while preserving 87.44% and 
89.30% Avg RI on the Pascal Series datasets, two-phase and multi-phase experiments respectively.

❑ Similarly, on the Diverse Weather Series datasets, it achieves an RAI improvement of +12.59% and 
+11.39% while preserving 88.06% and 88.57% Avg RI on the two-phase and multi-phase experiments, 
respectively.

Detailed quantitative results on Daytime Sunny [1:4] → Night Sunny [5:7].

Method Base Detector

Trainable

Params 

(M)

T1

Daytime 

Sunny 

[1:4]

T2: Night Sunny [5:7]

Avg RI 

(%)

Avg GI 

(%)

RAI 

(%)

Old New Unseen

Daytime 

Sunny 

[1:4]

Night 

Sunny 

[5:7]

Night 

Sunny 

[1:4]

Daytime 

Sunny 

[5:7]

Sequential FT YOLO11n 2.58

YOLO11n 2.58

YOLO11n 2.58

VitDet 110.52

Deformable DETR 39.85

DuET (Ours) YOLO11n 2.58

LwFECCV′16 [1]

ERDCVPR′ 22 [2]

LDBAAI′ 24 [3]

CL − DETRCVPR′ 23 [4]

49.40±0.3

49.40±0.2

49.40±0.5

45.30±0.6

46.29±0.4

49.40±0.2

0.00±0.0

27.60±0.4

33.00±0.4

0.50±0.3

27.41±0.5

43.50±0.1

62.20±0.5

0.34±0.6

34.00±0.3

15.10±0.4

31.94±0.6

22.20±0.3

12.60±0.4

21.30±0.3

26.10±0.6

0.30±0.5

19.85±0.3

31.60±0.2

35.90±0.3

0.67±0.5

29.10±0.7

16.90±0.7

32.55±0.4

27.40±0.1

0.00±0.0

55.87±0.3

66.80±0.5

1.10±0.2

59.21±0.2

𝟖𝟖. 𝟎𝟔±𝟎.𝟐

45.88±0.6

21.88±0.7

53.04±0.3

22.41±0.3

54.96±0.5

𝟓𝟔. 𝟗𝟓±𝟎.𝟏

22.94±0.3

38.88±0.6

59.92±0.4

11.76±0.6

57.09±0.4

𝟕𝟐. 𝟓𝟏±𝟎.𝟐

[1] Li, Z., & Hoiem, D. (2017). Learning without forgetting. IEEE transactions on pattern 
analysis and machine intelligence, 40(12), 2935-2947.
[2] Feng, T., Wang, M., & Yuan, H. (2022). Overcoming catastrophic forgetting in incremental 
object detection via elastic response distillation. In Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (pp. 9427-9436).

[3] Song, X., He, Y., Dong, S., & Gong, Y. (2024, March). Non-exemplar domain 

incremental object detection via learning domain bias. In Proceedings of the AAAI 
Conference on Artificial Intelligence (Vol. 38, No. 13, pp. 15056-15065).

[4] Liu, Y., Schiele, B., Vedaldi, A., & Rupprecht, C. (2023). Continual detection 

transformer for incremental object detection.



Evaluating DuET across different Base Detectors

Results of proposed DuET framework on Daytime Sunny [1:4] → Night Sunny [5:7] with different base detectors. 

Method Base Detector
Trainable

Params (M)
GFLOPs

Avg RI 

(%)

Avg GI 

(%)

RAI 

(%)

DuET 

(Ours)

VitDet [1] 110.52 1829.61 27.55±0.3 28.22±0.8 27.89±0.5

Deformable DETR [2] 39.85 11.77 84.45±0.2 33.45±0.1 58.95±0.2

RT-DETR-l [3] 32 103.4 47.73±0.2 21.00±0.1 34.37±0.2

RT-DETR-x [3] 65.49 222.5 56.39±0.2 24.15±0.1 40.27±0.2

YOLO11n [4] 2.58 6.3 88.06±0.2 𝟓𝟔. 𝟗𝟓±𝟎.𝟏 𝟕𝟐. 𝟓𝟏±𝟎.𝟑

YOLO11x [4] 56.84 194.4 𝟗𝟔. 𝟖𝟖±𝟎.𝟐 42.41±0.1 69.18±0.2

[1] Li, Y., Mao, H., Girshick, R., & He, K. (2022, October). Exploring plain vision transformer 
backbones for object detection. In European conference on computer vision (pp. 280-296). 
Cham: Springer Nature Switzerland.
[2] Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2020). Deformable detr: Deformable 
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159.

[3] Zhao, Y., Lv, W., Xu, S., Wei, J., Wang, G., Dang, Q., ... & Chen, J. (2024). Detrs beat 

yolos on real-time object detection. In Proceedings of the IEEE/CVF conference on 

computer vision and pattern recognition (pp. 16965-16974).
[4] Jocher, G., Qiu, J., & Chaurasia, A. (2024). Ultralytics YOLO11, Version 11.0. 0



Catastrophic Forgetting of old classes



Qualitative Analysis: Two Phase Experiments



Qualitative Analysis: Multi Phase Experiments



Qualitative Analysis: Multi Phase Experiments



Ablations: Role of each component

Seq 
FT

Incremental 
Head

DuET 
Module 𝓛∗

𝑫𝒊𝒔𝒕𝒊𝒍𝒍 𝓛𝑫𝑪
Avg RI

(%)
Avg GI

(%)
RAI
(%)

✗ ✗ ✗ ✗ ✗ 0.5 9.13 4.82

✓ ✗ ✗ ✗ ✗ 0.75 12.86 6.81

✓ ✓ ✗ ✗ ✗ 24.75 33.36 29.06

✓ ✓ ✓ ✗ ✗ 75.00 37.26 56.13

✓ ✓ ✓ ✓ ✗ 87.06 37.75 62.41

✓ ✓ ✓ ✓ ✓ 87.44 44.54 65.99

Ablations of DuET framework with different components and losses



Ablations: Influence of random class-domain order

𝑻𝟏 𝑻𝟐 𝑻𝟑
Avg RI

(%)
Avg GI

(%)
RAI
(%)

Night Sunny [5:7] Daytime Sunny [1:2] Daytime Foggy [3:4] 83.49 51.01 67.25
Night Sunny [3:4] Daytime Sunny [5:7] Daytime Foggy [1:2] 80.39 51.76 66.08
Night Sunny [1:2] Daytime Sunny [3:4] Daytime Foggy [5:7] 88.57 41.92 65.25

Daytime Foggy [1:2] Night Sunny [3:4] Daytime Sunny [5:7] 78.34 50.54 64.44
Daytime Sunny [1:2] Daytime Foggy [3:4] Night Sunny [5:7] 88.33 35.97 62.15

Standard Deviation 4.12 6.26 1.72

Influence of random permutations across three incremental tasks on Diverse Weather Series datasets.



Ablations: Complexity Analysis

Method Base 
Detector GFLOPs Trainable 

Params (M)
Avg. Inference 

Speed (ms)
Avg. Memory 

Footprint (GB)
Sequential FT YOLO11n 6.3 2.58 9.15 0.235

LwF YOLO11n 6.3 2.58 9.125 0.261
ERD YOLO11n 6.3 2.58 9.075 0.257
LDB ViTDet 1829.61 110.52 137.92 1.818

CL-DETR Deformable DETR 11.77 39.85 39.075 0.789
DuET (Ours) YOLO11n 6.3 2.58 4.4 0.244

Computational complexity analysis of various methods



Key Contributions

❑ To the best of our knowledge, DuET is the first method to tackle the proposed task of Dual Incremental 

Object Detection using the concept of Task Merging.

❑ DuET framework offers a simple yet effective Task-Arithmetic based solution, which is object-

detector agnostic, validated on YOLO11 and RT-DETR, and enables real-time incremental object 

detection.

❑ Directional Consistency Loss helps to mitigate sign conflicts during model merging, and ensures 

stable incremental learning.

❑ Retention-Adaptability Index quantifies both catastrophic forgetting and domain generalization 

performance effectively.

❑ DuET opens a new research direction in IOD, providing a promising framework for continual learning 

and domain adaptation.



Thank You

Scan to view paper!
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