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Problem Motivation

Dynamic Environments Demand

Incremental Learning:

O Autonomous vehicles must recognize
new road signs, vehicles, and objects
under varying weather, lighting, and city
conditions.

O Similarly, surveillance systems must
detect new objects, threats, or
anomalies in changing environments.

Challenges in Traditional Object

Detection:

O Trained once on a fixed dataset — Fails
in new environments (domain shift)

L New objects emerge over time —
Cannotrecognize unseen classes
(class shift)

L Retraining from scratch is
computationally expensive and
impractical.

Source: Al generated video (using Veo)
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Limitations of existing approaches

Class Incremental Object Detection (CIOD)
L Learns new objectclasses (C; — C5)

X Fails in unseen domains (D; # D,)

X Suffers from catastrophic forgetting in new
environments

Domain Incremental Object Detection (DIOD)
L Adapts to new domains (D; — D,)

>{ Cannotdetect new object classes (C; # C,)
X Suffers from catastrophic forgetting when
adapting to new object categories
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Dual Incremental Object Detection (DulOD)

Class Incremental Object Detection ( Domain Incremental Object Detection Dual Incremental Object Detection )
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We present a new paradigm in object detection literature that requires object detectors to:
L Incrementally learn new object categories: (C; = C, » C3 > - Cp)
L Simultaneously adapt to unseen domains: (D; = D, = D3 = -+ D7)

L Learnin an Exemplar-Free manner, without access to previously seen training data.
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Problem Formulation: Defining DulOD

Key Requirements to setup DulOD:

< The model must detect objects from all learned classes across all encountered domains.

. It must prevent catastrophic forgetting while generalizing to new environmental conditions.
. Exemplar-Free Constraint: the model should not store previous task data for retraining.

Formal Problem Definition:

Let T = {T;,T,, - Ty} represent a sequence of tasks where:

U Each task T; introduces a new set of object classes C; from a novel domain D;.
U The cumulative set of all classes and domains encountered up to task T; is:

1 Our objective is to incrementally update the object detection model Mg, , parameterized by 0, using only
data from D¢, ensuring that My, can accurately detect objects from all learned classes (., across all

encountered domains Dy .¢.
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A quick look at the DUET framework!
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Building up the DUET Framework
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Building up the DUET Framework
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Building up the DUET Framework

4 \ 4 ) - ™\
(s 73+ (20, 1)) Generic Object
f e Y | R (7 Detector
¢ ER
car
Generic | Night Sunny [1:2]
Object
Detector Shared
Parameters (0,)

Training
Phase

Inference
Phase

My, 0 + My,
— .
(

Task-Specific Parameters (6,)

W OEE GRS REE SRR R TR BEE TER TER SRR BER GEE TER SRR TER SRR B B W R e W e e )

J\_

JICCV

0CT19-23, 2025

HONOLULU
HAWAII



Building up the DUET Framework
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Building up the DUET Framework
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DUET Framework
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DUET Module & Incremental Head

] DuET Module fuses task vectors on shared weights. It
merges past and current task vectors dynamically using
layer-wise retention (a;) and adaptation (f;) factors,
effectively mitigating catastrophic forgetting.

Tola = Qst_l - 050 ) Teurr = Qst - 950
O Foreachlayer,l € {1,2,--- L}, we define a p-factor:
py = ”Téld” - ”Téurr”

”T(l)ld + Téurr” + &
§; = y tanh(p,)
a; = Apgse + clamp(8, —v,v), fi=1 —

! _ pl l l
(Qst)mcre =05, T 1 To1a + B Teurr

O Applying this across all layers yields (Gst) as shown.

incre
J Incremental Head concatenates task-specific parameters

from past and current tasks, thereby enhancing model’s
generalization across diverse detection domains.

(eTt)mcre < lHTt ’ (HTt—l)incre]

Told = U5,

B; : adaptation factor
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Loss Objectives

O For the base task (t=1), we optimize the object detector using the standard detection loss,
Lpetector Which is specific to the base detector and is responsible for object localization and classification.

01 < 09 — 1 - VoLpetector
O Forincremental tasks (t = 2), we augment Lptector With a modified Distillation Loss (L) that also

filters low confidence classification predictions and high variance bounding box predictions from the old
model, along with our Directional Consistency Loss (L) scaled by scaling coefficients

Apistinn & Apc respectively.

I . LDetectorr
Total — *
LDetector + ADistillLDistill + ADCLDC t =

O < 01— 1 VoLlrotar
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Directional Consistency Loss

O Incremental learning suffers from conflicting weight updates during model-merging [1], which can
destabilize the merging of shared parameters.

d We introduce the Directional Consistency Loss (Lp.) to address this. This loss penalizes updates in the
shared parameter space that diverge in direction relative to previous incremental changes, thus promoting
a consistent evolution of the shared task vectors.

[ Specifically, for (t = 2) we define the DC Loss between consecutive tasks t & t — 1 as:

Ly = z ReLU (¢ = ) (z&, - )]

[ €0

0.07

U £, effectively reduces catastrophic forgetting by stabilizing
weight updates.

O L, remains object detector-agnostic — can be applied to
different detection backbones.
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Datasets: Pascal Series

Domains
Pascal Series Datasets Statistics Class ID Class Name : :
Watercolor Comic Clipart VOC
Total Train VEL 1 bicycle v v v v
Dataset :
Classes Images Images 3= 2 bird v v v v
3 car v v v v
Pascal VOC [1] 20 16551 4952 . -~ Y J ; J
Clipart [2] 20 500 500 3= 5 dog v v v v
Watercolor [2] 6 1000 1000 L e PELEEN v v v v
C ; 7 aeroplane v v
omic [2] 6 1000 1000 . boat v v
9 bottle v v
7= 10 bus v v
11 chair v v
12 cow v v
13 diningtable v v
14 horse v v
15 motorbike v v
16 pottedplant v v
7= 17 sheep v v
18 sofa N4 v
19 train v v
20 tvmonitor v v
[1] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., & Zisserman, A. (2010). The pascal visual
object classes (voc) challenge. International journal of computer vision, 88, 303-338. o
[2] Inoue, N., Furuta, R., Yamasaki, T., & Aizawa, K. (2018). Cross-domain weakly-supervised object I EEV HUN[]I-”'-U
detection through progressive domain adaptation. In Proceedings of the IEEE conference on

HAWAII
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Datasets: Diverse Weather Series

Diverse Weather Series Datasets Statistics

Total Train Val
Dataset
Classes Images Images
Daytime-Sunny [1] 7 19317 8289
Night-Sunny [1] 7 25868 7756
Daytime-Foggy [2] 7 1829 688

Daytime-sunny Night-sunny  Daytime-foggy

Class Class Bomains

ID Name

Daytime Night Daytime Night Dusk
Sunny Sunny Foggy Rainy Rainy

0 { 1 bus v v v v v
2 bike v v v v v
2 3 car v v v v v
4 motor v v v v v
5 |person v v v v v
3 6 rider v v v v v
7 truck v v v v v

[1]1Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F., ... & Darrell, T. (2020). Bdd100k: A diverse driving
dataset for heterogeneous multitask learning. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition (pp. 2636-2645).

[2] Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., ... & Schiele, B. (2016). The
cityscapes dataset for semantic urban scene understanding. In Proceedings of the IEEE conference on

computer vision and pattern recognition (pp. 3213-3223).
I EEV% HONOLULU
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Proposed Evaluation Metrics

[ Since DulOD goes beyond preserving old knowledge (retention), it also demands evaluating how well the
model can adapt to unseen categories that emerge within known domains (adaptability).
[ To address this requirement, we introduce the Retention-Adaptability Index (RAI), which is defined as the

mean of the Average Retention Index (Avg Rl) and the Average Generalization Index (Avg Gl).

Avg RI + Avg GI
RAI = g > g

O For each domain D; corresponding to task T; where i € {1,2,--:T — 1}, we define Retention Index
as Rlp, and calculate Avg RI as:

Tr T—-1

_ mAP,; (Di[G]) Avg RI = 1 2 Rl

- . ) - 7 4 D;
mAP, g, (Di[C:]) r-1g

new
O Similarly, for a given domain D; at task T;, we define Generalization Index as Glp,r, and calculate Avg Gl as:

T .
mAP J (Di [Cunseen])

unseen

1
Glp. . = ) AngI=—zGI..
PP mAPres (Di[Cunseen]) N & o
plj
O Significance: A higher Avg Rl implies better retention of past knowledge while lower values indicate
catastrophic forgetting. Similarly, Avg Gl quantifies the model's ability to generalize to unseen classes

across all encountered domains so far and a higher value of Avg Gl indicates better generalization.
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Quantitative Results

O On an average, DUET achieves an RAI improvement of +9.82% and +13.12% while preserving 87.44% and
89.30% Avg Rl on the Pascal Series datasets, two-phase and multi-phase experiments respectively.

[ Similarly, on the Diverse Weather Series datasets, it achieves an RAl improvement of +12.59% and
+11.39% while preserving 88.06% and 88.57% Avg Rl on the two-phase and multi-phase experiments,
respectively.

Detailed quantitative results on Daytime Sunny [1:4] > Night Sunny [5:7].
T2: Night Sunny [5:7]

Method

Base Detector

Trainable
Params

(M)

T

Daytime

Sunny
[1:4]

Oid

Daytime
Sunny
[1:4]

New

Night
Sunny
[5:7]

Unseen

Night
Sunny
[1:4]

Daytime
Sunny
[5:7]

Avg RI
(%)

Avg GI
(%)

RAI
(o)

Sequential FT YOLO11n 2.58 149.40.05 |0.00400 [62.20405|12.60404 |3590403] 0.00400 |45.88106|22.94,5
LwFiceyrie [1] YOLO11n 2.58 149.40,4, |27.60404 | 0.34106 |21.30403 | 0.674+05 | 55.87 5| 21.88407(38.88 6
ERDcypr’ 22 [2] YOLO11n 2.58 [49.404¢5 |33.00404 [34.00403(26.104¢¢ |29-10+07] 66.80,05]|53.04403(59.92,,.,
LDB a7 24 [3] VitDet 110.52 4530196 | 0-50403 |15.10404 | 030495 [16:90+07] 1.1040, [2241403(11.76,0,
CL — DETR(ypr’ 23 [4]|Deformable DETR| 39.85 [46.29,04 |27-41405 |31.94106 |19.85,¢3 [32:554+0.4] 59.211¢2|54.96405(57.09,,.,
DUET (Ours) YOLO11n 2.58  149.40,405 |43-5040.1 122.2040.3 |31.60,¢, 27.40401]88.06,¢,[26-95101 72.51.0;

[1]1Li, Z., & Hoiem, D. (2017). Learning without forgetting. IEEE transactions on pattern

analysis and machine intelligence, 40(12), 2935-2947.

on Computer Vision and Pattern Recognition (pp. 9427-9436).

[3]1 Song, X., He, Y., Dong, S., & Gong, Y. (2024, March). Non-exemplar domain

incremental object detection via learning domain bias. In Proceedings of the AAAI
[2] Feng, T., Wang, M., & Yuan, H. (2022). Overcoming catastrophic forgetting in incremental Conference on Artificial Intelligence (Vol. 38, No. 13, pp. 15056-15065).
object detection via elastic response distillation. In Proceedings of the IEEE/CVF Conference [4] Liu, Y., Schiele, B., Vedaldi, A., & Rupprecht, C. (2023). Continual detection
transformer for incremental object detection.
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Evaluating DUET across different Base Detectors

Results of proposed DUET framework on Daytime Sunny [1:4] > Night Sunny [5:7] with different base detectors.

Base Detector P-I:raalrrrlnasb(ﬁ) A‘('?A )RI A‘;&) )G : I(-\:,z‘)l
VitDet [1] 110.52 1829.61 27.55103 | 28.22408 |27.894¢5
Deformable DETR [2] 39.85 11.77 844540, | 3345401 |58.954¢2
DuET RT-DETR-I [3] 32 103.4 47.73402 | 21.0049, |34.374102
(Ours) RT-DETR-x [3] 65.49 222.5 56.39.9, | 24.154941 |40.274,
YOLO11n [4] 2.58 6.3 88.0619, |56.95.01 |72.514¢3
YOLO11x [4] 56.84 194 .4 96.88.02 | 42.41,04 1691840,

[1]Li, Y., Mao, H., Girshick, R., & He, K. (2022, October). Exploring plain vision transformer  [3] Zhao, Y., Lv, W., Xu, S., Wei, J., Wang, G., Dang, Q., ... & Chen, J. (2024). Detrs beat
backbones for object detection. In European conference on computer vision (pp. 280-296).  yolos on real-time object detection. In Proceedings of the IEEE/CVF conference on

Cham: Springer Nature Switzerland. computer vision and pattern recognition (pp. 16965-16974). I EEV% HDNI]I.UI.U

[2] zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2020). Deformable detr: Deformable [4] Jocher, G., Qiu, J., & Chaurasia, A. (2024). Ultralytics YOLO11, Version 11.0. 0 HHWH"
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159. 0CT19-23, 2025



Catastrophic Forgetting of old classes
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Qualitative Analysis: Two Phase Experiments
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Qualitative Analysis: Multi Phase Experiments s~
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Qualitative Analysis: Multi Phase Experiments  s<»»

SONY
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Ablations: Role of each component

Ablations of DUET framework with different components and losses

Seq Incremental . AvgRI Avg Gl RAI

T Head L pistiu Lpc (%) (%) (%)

X X X X X 0.5 9.13 4.82
v X X X X 0.75 12.86 6.81

v v X X X 24.75 33.36 | 29.06
v v v X X 75.00 37.26 56.13
v v v v X 87.06 37.75 62.41
v v 4 v v 87.44 44.54 65.99

2 HONOLULY
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Ablations: Influence of random class-domain order il

Influence of random permutations across three incremental tasks on Diverse Weather Series datasets.

AvgRI Avg Gl RAI
(%) (%) (%)

T, T, T,

Night Sunny [5:7] |Daytime Sunny [1:2]| Daytime Foggy [3:4] 83.49 51.01 67.25
Night Sunny [3:4] [Daytime Sunny [5:7]| Daytime Foggy [1:2] 80.39 51.76 66.08
Night Sunny[1:2] |Daytime Sunny [3:4]| Daytime Foggy [5:7] 88.57 41.92 65.25
Daytime Foggy [1:2]| NightSunny[3:4] [Daytime Sunny[5:7] 78.34 50.54 64.44
Daytime Sunny [1:2]| Daytime Foggy [3:4] | Night Sunny [5:7] 88.33 35.97 62.15
Standard Deviation 4.12 6.26 1.72

ICCV
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Ablations: Complexity Analysis

Computational complexity analysis of various methods

Base Trainable Avg. Inference Avg. Memory
Hethod Detector GFLOES Params (M) Speed (ms) Footprint (GB)
Sequential FT YOLO11n 6.3 2.58 9.15 0.235
LwF YOLO11n 6.3 2.58 9.125 0.261
ERD YOLO11n 6.3 2.58 9.075 0.257
LDB ViTDet 1829.61 110.52 137.92 1.818
CL-DETR Deformable DETR | 11.77 39.85 39.075 0.789
DUET (Ours) YOLO11n 6.3 2.58 4.4 0.244
0.9 —
e T ~
0.8 p) § S
T3 o —
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Key Contributions

O To the best of our knowledge, DUET is the first method to tackle the proposed task of Dual Incremental
Object Detection using the concept of Task Merging.

O DUET framework offers a simple yet effective Task-Arithmetic based solution, which is object-
detector agnostic, validated on YOLO11 and RT-DETR, and enables real-time incremental object
detection.

0 Directional Consistency Loss helps to mitigate sign conflicts during model merging, and ensures
stable incremental learning.

0 Retention-Adaptability Index quantifies both catastrophic forgetting and domain generalization
performance effectively.

O DUET opens a new research direction in IOD, providing a promising framework for continual learning
and domain adaptation.
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