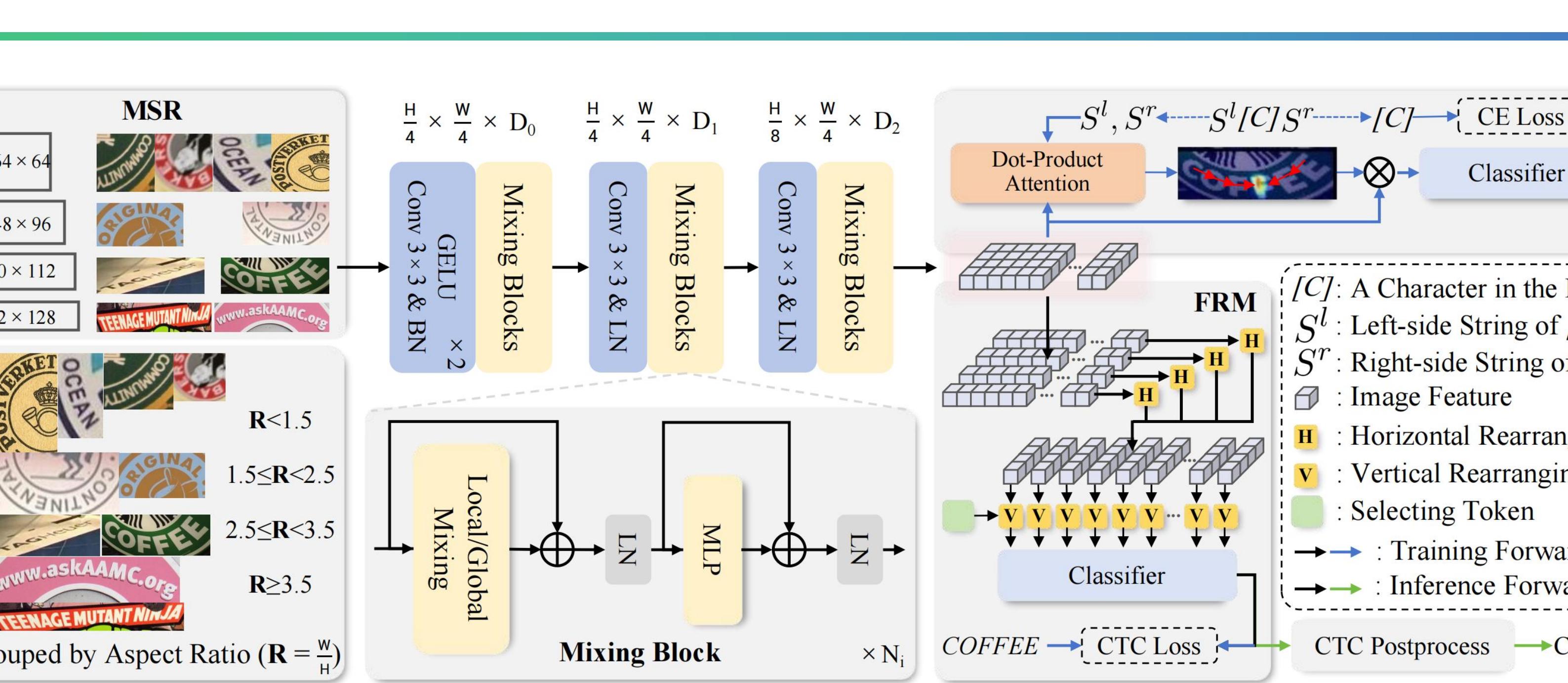

SVTRv2: CTC Beats Encoder-Decoder Models in Scene Text Recognition

Yongkun Du, Zhineng Chen*, Hongtao Xie, Caiyan Jia, Yu-Gang Jiang


zhinchen@fudan.edu.cn; ykdu23@m.fudan.edu.cn

We propose SVTRv2, a CTC model endowed with the ability to handle text irregularities and model linguistic context. First, a **Multi-Size Resizing (MSR)** strategy is proposed to resize text instances to appropriate predefined sizes, effectively avoiding severe text distortion. Meanwhile, we introduce a **Feature Rearrangement Module (FRM)** to ensure that visual features accommodate the requirement of CTC, thus alleviating the alignment puzzle. Second, we propose a **Semantic Guidance Module (SGM)**. It integrates linguistic context into the visual features, allowing CTC model to leverage language information for accuracy improvement. Code is available at: <https://github.com/Topdu/OpenOCR>

Motivation

- As shown in the Figure above, CTC models generally exhibit worse accuracy than encoder-decoder-based methods (EDTRs) due to struggling with text irregularity and linguistic missing.

Method

MSR resizes text images to four predefined sizes based on their aspect ratios ($R=W/H$), with each size corresponding to a specific R range ($R<1.5$, $1.5\leq R<2.5$, $2.5\leq R<3.5$, $R\geq 3.5$).

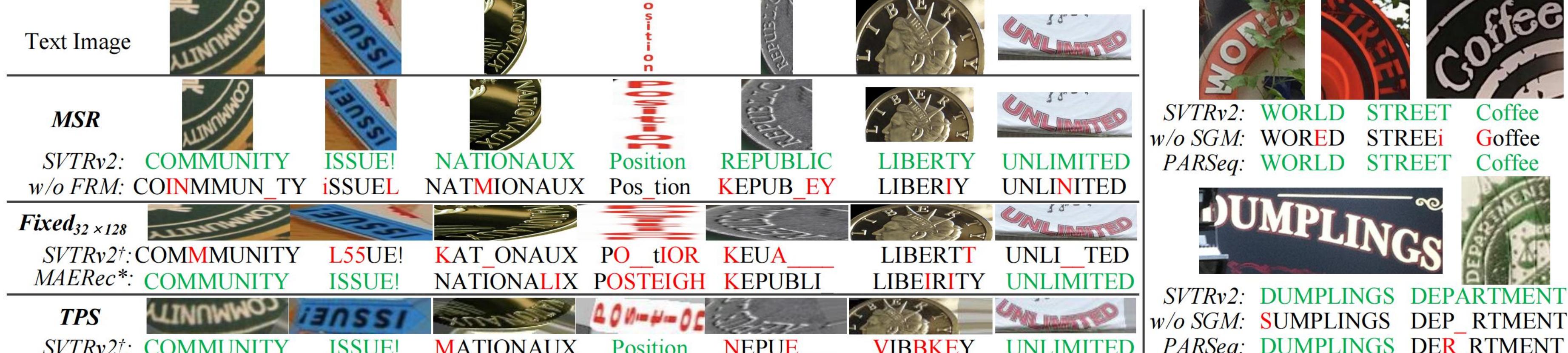
It minimizes text distortion caused by fixed-size resizing, maintains the discriminability of the text image and enables the CTC model to handle arbitrary shaped text images

FRM applies horizontal and horizontal rearrangement with MHA to get the final sequence F^v aligned with text reading order.

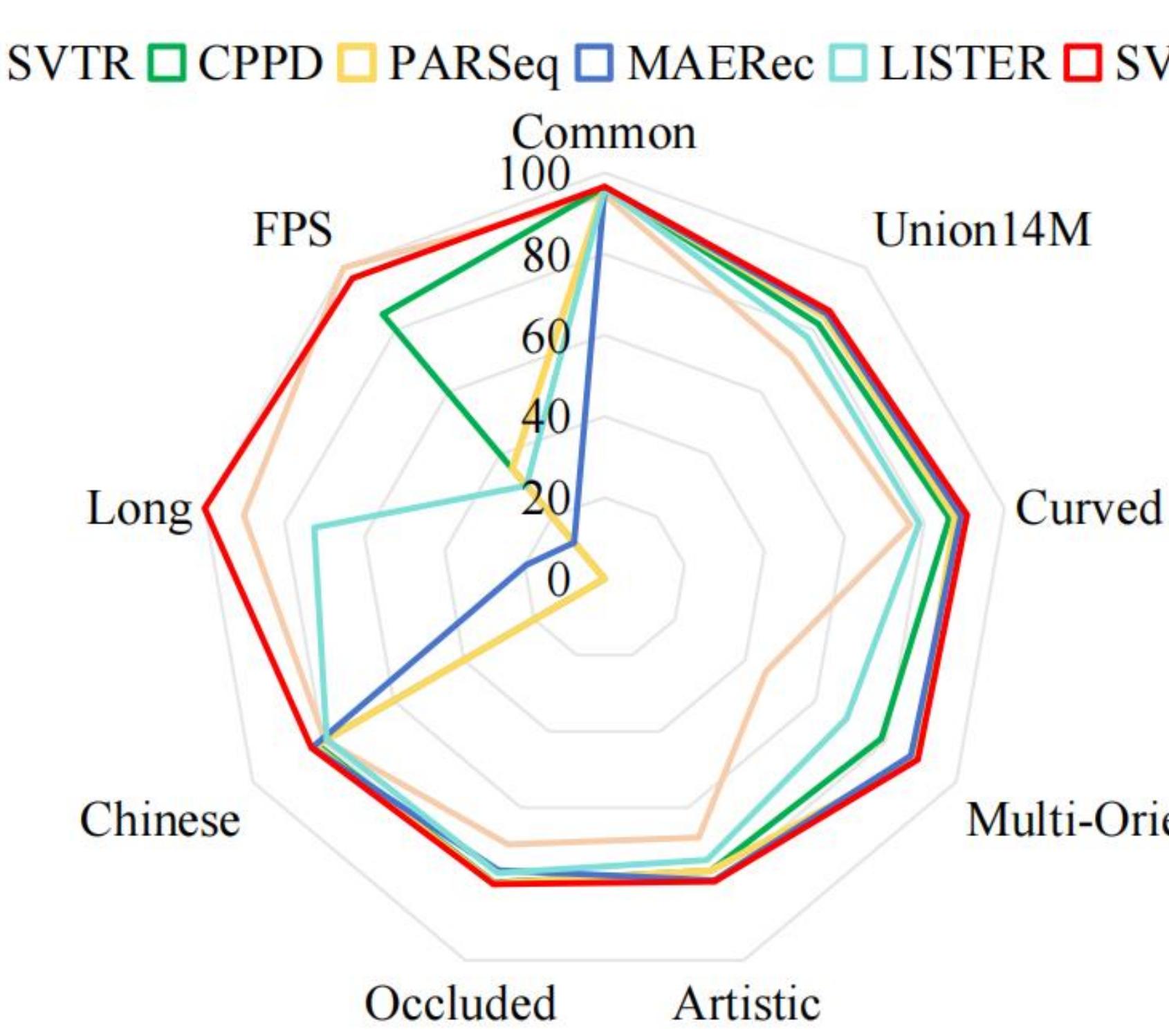
$$\begin{aligned} \mathbf{M}_i^h &= \sigma \left(\mathbf{F}_i \mathbf{W}_i^q \left(\mathbf{F}_i \mathbf{W}_i^k \right)^t \right) \\ \mathbf{F}_i^h &= \text{LN}(\mathbf{M}_i^h \mathbf{F}_i \mathbf{W}_i^v + \mathbf{F}_i) \\ \mathbf{F}_i^h &= \text{LN}(\text{MLP}(\mathbf{F}_i^h) + \mathbf{F}_i^h) \\ \mathbf{M}_j^v &= \sigma \left(\mathbf{T}^s \left(\mathbf{F}_{:,j}^h \mathbf{W}_j^k \right)^t \right) \\ \mathbf{F}_j^v &= \mathbf{M}_j^v \mathbf{F}_{:,j}^h \mathbf{W}_j^v \end{aligned}$$

SGM guides the visual model to integrate left and right linguistic context into visual features.

$$\mathbf{Q}_i^l = \text{LN} \left(\sigma \left(\mathbf{T}^l \mathbf{W}^q \left(\mathbf{E}_i^l \mathbf{W}^k \right)^t \right) \mathbf{E}_i^l \mathbf{W}^v + \mathbf{T}^l \right)$$


$$\mathbf{A}_i^l = \sigma \left(\mathbf{Q}_i^l \mathbf{W}^q \left(\mathbf{F} \mathbf{W}^k \right)^t \right), \mathbf{F}_i^l = \mathbf{A}_i^l \mathbf{F} \mathbf{W}^v$$

It significantly improving the recognition accuracy in occluded text. It is discarded during inference not increasing the inference time cost.


Ablation Study

	R_1	R_2	R_3	R_4	Curve	MO	Com	UI4M
	2,688	788	266	32				
SVTRv2 (+MSR+FRM)	87.4	88.3	86.1	87.5	88.17	86.19	96.16	83.86
SVTRv2 (w/o both)	70.5	81.5	82.8	84.4	82.89	65.59	95.28	77.78
vs. MSR	Fixed 32×128	72.1	83.1	84.1	85.6	83.18	68.71	95.56
	Padding $32 \times W$	52.1	71.3	82.3	87.4	71.06	51.57	94.70
(+FRM)	Fixed 64×256	76.6	81.6	81.9	80.2	85.70	67.49	95.07
vs. FRM	w/o FRM	85.7	86.3	86.0	85.5	87.35	83.73	95.44
	+ H rearranging	87.0	87.1	86.3	85.5	88.05	85.76	95.98
(+MSR)	+ V rearranging	85.0	87.6	88.5	85.5	88.01	84.44	95.66
	+ TF ₁	86.4	86.3	87.5	86.1	87.51	85.50	95.60

	Method	OST_w	OST_h	Avg	Com	UI4M
	w/o SGM	82.86	66.97	74.92	96.16	83.86
	SGM	86.26	73.80	80.03	96.57	86.14
Linguistic context modeling	GTC [23]	83.07	68.32	75.70	96.01	84.33
	ABINet [15]	83.07	67.54	75.31	96.25	84.17
	VisionLAN [47]	83.25	68.97	76.11	96.39	84.01
	PARSeq [4]	83.85	69.24	76.55	96.21	84.72
	MAERec [25]	83.21	69.69	76.45	96.47	84.69

Comparison with State-of-the-arts

- Compared with previous methods, including EDTRs (CPPD, PARSeq, MAERec, and LISTER) and the CTC-based model (SVTR).
- SVTRv2 achieves new state-of-the-art performance in every scenario, including standard regular (Common) and irregular text (Curved and Multi-Oriented), Union14M-Benchmark, occluded scene text (OST), long text (Long), and Chinese text.
- Although SVTRv2 does not achieve the highest FPS, it remains the fastest among all EDTR models.

	R_1	R_2	R_3	R_4	Curve	MO	Com	UI4M	LTB
SVTRv2	90.8	89.0	90.4	91.0	90.64	89.04	96.57	86.14	50.2
TPS	86.8	82.3	77.3	75.7	82.19	86.12	94.62	78.44	0.0
MAE	SVTR [11]	81.3	87.6	87.6	88.3	87.88	78.74	96.32	83.23
REC*	SVTRv2	88.0	88.9	89.4	88.3	89.96	87.56	96.42	85.67

SVTR: "SWEET LADY LOOK DOWN FROM THY WINDOW ON ME"
CRNN: "SWEET LADY IDOK DOWN FROM THY WOYDOW ON XE"
SITR: "SWEET LADY LOOK DOWN FRO THY W_NDOW OW ME,
LISTER: "SWEET LADY LOOK WINDOW ON ME?
SVTRv2: "SWEET LADY LOOK DOWN FROM THY WINDOW ON ME"
w/ TPS: C
w/ MAERec*: "mayLosMocanos.com
EDITED WITH INTRODUCTION BY ROY TORGESON
CRNN: EDITED WITH INTRODUCTION BY ROY TORGESON
SITR: EDITED W TH INTRODUCTION BY ROY TORGESON
LISTER: EDITED WITH INTRODUCTION B O TORGESON
SVTRv2: EDITED WITH INTRODUCTION BY ROY TORGESON
w/ TPS: CIYYS
w/ MAERec*: EDITED WITH IN I_N G SON

Method	Scene	Web	Doc	HW	Avg	SceneL>25	Size
ASTER [40]	61.3	51.7	96.2	37.0	61.55	-	27.2
MORAN [32]	54.6	31.5	86.1	16.2	47.10	-	28.5
SAR [29]	59.7	58.0	95.7	36.5	62.48	-	27.8
SEED [36]	44.7	28.1	91.4	21.0	46.30	-	36.1
MASTER [31]	62.8	52.1	84.4	26.9	56.55	-	62.8
ABINet [15]	66.6	63.2	98.2	53.1	70.28	-	53.1
TransOCR [5]	71.3	64.8	97.1	53.0	71.55	-	83.9
CCR-CLIP [56]	71.3	69.2	98.3	60.3	74.78	-	62.0
DCTC [60]	73.9	68.5	99.4	51.0	73.20	-	40.8
CAM [54]	76.0	69.3	98.1	59.2	76.80	-	135
PARSeq* [4]	84.2	82.8	99.5	63.0	82.37	0.0	28.9
MAERec* [25]	84.4	83.0	99.5	65.6	83.13	4.1	40.8
LISTER* [8]	79.4	79.5	99.2	58.0	79.02	13.9	55.0
DPTR* [61]	80.0	79.6	98.9	64.4	80.73	0.0	68.0
CPPD* [13]	82.7	82.4	99.4	62.3	81.72	0.0	32.1
IGTR-AR* [14]	82.0	81.7	99.5	63.8	81.74	0.0	29.2
SMTR* [12]	83.4	83.0	99.3	65.1	82.68	49.4	20.8
CRNN* [39]	63.8	68.2	97.0	46.1	68.76	37.6	19.5
SVTR-B* [11]	77.9	78.7	99.2	62.1	79.49	22.9	19.8
SVTRv2-T	77.8	78.8	99.2	62.0	79.45	47.8	6.8
SVTRv2-S	81.1	81.2	99.3				