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3D Monocular Object Detection

* Fixed Categories

e Cross-dataset Generalization

Trained on | AP{E® AP APSS  Trainedon | AP5ST APYS
Hypersim 152 95 75 KITTI

SUN 5.8 3477 13.1 nuScenes ‘

ARKit 59 142 38.6

Brazil, Garrick, et al. "Omni3d: A large benchmark and model for 3d object detection in the wild."
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Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2023.
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2D Open-set Object Detection

_, Obiject localization

-

COCO pre-defined categories

person

Standard Object Detection

(a) Closed-Set Object Detection

Text understanding .
Ll

Human-input novel categories Human-input reference sentences

worldcup

Zero-Shot Transfer to
Novel Categories

The bottom man with his head up

Referring Object Detection
(Referring Expression Comprehension)/

v
(b) Open-Set Object Detection

Collaborate with stable diffusion.

): Dog

Prompt (modify background): All people
around the world cheer with a worldcup.

(c) Application: Image Editing

Liu, Shilong, et al. "Grounding dino: Marrying dino with grounded pre-training for open-set object detection." European Conference on Computer Vision 2024.
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Metric Monocular Depth Estimation
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Piccinelli, Luigi, et al. "UniDepth: Universal monocular metric depth estimation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2024.
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3D-MOQOD

e End-to-end 2D to 3D Lifting

* Grounding DINO
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Architecture
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Architecture
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3D Bounding Box Head

e 2D-t0-3D Prediction
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Canonical Image Space

Short Edge

Long Edge

Ours

ETH:lrich cL)

Training

Computer Vision
and Geometry Lab

Inference

Resize Padding Image Resolutions =~ GPU RAM (G)
Short Edge  Right-Bottom  Short Edge to 512 21
Long Edge  Right-Bottom Long Edge to 1333 23
Ours Center 800 x 1333 17
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Open Detection Score (ODS)

* Matching

Regular Vehicle Sink Picture

 Normalized Distance (Radius)

60
* True Positive Errors S
%: 40
* Translation, Shape, Orientation 2 ” ]
0 | I
IoU

ODS = [3 X AP;p dist | Z(l — mTPE)] loU

m Ours Cube R-CNN = OVM3D-Det
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Open-set Benchmark

Argoverse 2

ScanNet

Method , .
AP_,)d]‘)St 1 mATE | mASE | mAOE | ODS 1| ODS (B) + ODS (N) 1 APf]‘)SI 1 mATE | mASE | mAOE | ODS 1| ODS (B) + ODS (N) 1

Cube R-CNN (In) - - - - - - - 19.5 0.725 0.771 0.858 20.5 24.6 0.0
Cube R-CNN (Out)| 10.5 0.896 0.869 0.991 9.3 19.5 0.0 - - - - - - -

Cube R-CNN [4] 8.6 0.903 0.867 0.953 8.9 18.6 0.0 20.0 0.733 0.774 0.921 19.5 23.4 0.0
OVM3D-Detf L[18] | 7.7 0.914 0.893 0.899 8.8 16.5 1.7 15.6 0.798 0.871 0.818 16.3 17.8 8.8
Ours (Swin-T) 14.8 0.782 0.697 0.612 22.5 31.7 14.2 27.3 0.630 0.726 0.650 30.2 33.6 13.4
Ours (Swin-B) 14.7 0.755 0.680 0.580 23.8 33.6 14.8 28.8 0.612 0.706 0.655 31.5 34.7 15.7
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Cross-domain Generalization

Trained on Hypersim Trained on SUN RGB-D Trained on ARKitScenes
Method AP hyp T AP.sun T AP ark T AP hyp T AP.sun T AP ark T AP hyp T AP.sun T AP ark T
3D 3D 3D 3D 3D 3D 3D 3D 3D
Cube R-CNN [4] 15.2 9.5 F 9.5 34.7 14.2 fi) 13.1 38.6
Uni-MODE [23] 14.7 5.6 3.6 3.0 28.5 8.8 4.2 13.0 35.0
Ours 25.6 15.9 14.5 13.8 42.1 214 12.9 23.8 43.9
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Closed-set Results

Method APt 4 APmUS 4 APsun 4 APDP 4 APAK 4 APSY 4 | APgIN
ImVoxelNet [44] - - - - - - 94
SMOKE [29] - - - - - - 9.6
FCOS3D [51] - - : . - - 9.8
PGD [52] - - . : - - 11.2
Cube R-CNN [4] | 32.6 30.1 15.3 7.5 41.7 50.8 23.3
Uni-MODE* [23] | 29.2 36.0 23.0 8.1 48.0 66.1 28.2
Ours (Swin-T) 32.8 31.5 21.9 10.5 51.0 64.3 28.4
Ours (Swin-B) 31.4 35.8 23.8 9.1 53.9 67.9 30.0
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Ablation Studies

CI Depth GA | APK!+ APMS+  APDP 4  APSIN4  APak 4 AP 4 Apomni ODS®2 4 ODSan4 QDS 4
1 - - g 32.5 29.7 8.1 17.3 46.5 54.9 24.1 18.2 29.0 23.6
9 - - 31.1 30.5 9.1 19.1 47.7 58.1 25.5 19.5 29.5 24.5
3V v - 29.8 30.7 10.3 19.9 48.6 58.8 26.2 20.0 29.4 24.7
4 v ¥ ¥ 32.1 31.9 9.9 20.8 49.1 60.2 26.8 22.0 30.0 26.0
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Qualitative Results
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Qualitative Results
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Qualitative Results
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