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Motivation
Overlooking modality-specific dynamics hinders effective forgetting mitigation in adapter-based VLM CL.
« Suboptimal forgetting prevention.

« Inadequately explored modality parameter distribution shifts in VLM.

0.04 Variance of parameters in last layer E CIFAR100-10 subsets
e oy | e | @G e
S | el oy o <10
Z 0.021 8
£ 0.01] g &
> U. E 3 4
B R S T A o . . : . : . . .
1 2 3 4 5 6 7 8 9 10 | 3 4 5 6 7 8 9 10
(@) Number of tasks | (b) Number of tasks

Visual modality’'s broader distribution increases forgetting risk.

Our hypothesis

* Inhibiting shifts in visual parameter distributions can mitigate forgetting.
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Challenge

Our hypothesis

* Inhibiting shifts in visual parameter distributions can mitigate forgetting.

Contribution

« We propose asymmetric adapter training to address modality-induced forgetting..

« We design multi-layer gradient projection with dynamic coefficients for CL.

« We achieve state-of-the-art in different CIL settings across different datasets.
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Framework
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Experiments
Method Venue 10 subset 20 subset Method 5 subset 10 subset 20 subset
Avg. 1 Last 1 Avg. 1 Last 1 Avg. | Last || Avg. | Last] Avg. | Last|
L2P [42] CVPR’22 80.83+1.30  74.60x0.90 | 78.39+0.04 72.09+1.12 Adapter—based CLIP 3.34 7.97 4.56 8.75 5.33 9.79
DualPrompt [41] ECCV™22 81.39+1.25 74.87+0s5 | 79.12+1.27  71.69+1.06 Adapter—based CLIP + GPM 3.30 7.98 4.50 8.69 5.35 9.27
CODiSN [40] 361 ggﬁé’g’; 2123* ;g;}i Zgggi 3232* MoE4Adapters + DMNSP 226 4.16 3.12 488 323 6.86
prompt ’ J2+1.01 Dl+o.81 0O/+0.40 2J+0.78 _
LAE [12] CVPR'23 76711010 71701050 | 73.72005 66.9810.25 adapter-based LLIPS+ DMINSE 215 254 | 460 4484 | 3600 &l
InfLoRA [25] CVPR'24  80.82:024 75.65:014 | 77.2820.45 71.01x0.45
EASE [48] CVPR’24 81.73 76.17 ; ;
CPI’Ompt [13] CVPR,24 82.92:I:0470 77.14:t0.11 81.46:}:0.93 74.79:§:0428 M h d 10 Subset 20 Subset 50 Subset
RAPF [18] ECCV’24 85.85 79.62 86.28 79.62 etho
VPT - NSP2 [29] NeurlPS'24  84.84:012 7888050 i i Avg. | Last| Avg. | Last| Avg. | Last]
Adapter-based CLIP + GPM [34] ] 86.184005 80.11:01> | 86735010 80.65:014 Adapter-based CLIP 714 1139 743 1261 9.34 14.52
Adapter-based CLIP+ TRGP [26] i 86.241010 81.291000 | 86.07501r 81.2110.15 Adapter-based CLIP + GPM  7.14 11.29 1 7.38 12.61 9.33 14.51
MoE4Adapters [45] + DMNSP - 86.45:10.11 81.87+0.16 | 87.06:0.20 81.61+0.1 MoE4Adapters + DMNSP 495 9.28 595 10.67 747 1244
Adapter—based CLIP + DMNSP - 87491007 81.94.0.15 86.81+0.16 82.72+0.00 Adapter—based CLIP + DMNSP 4.36 7.48 4.73 9.52 7.39 12.42
» Achieve competitive results across 5 datasets and over 10 settings.
» Achieve a lower forgetting rate.
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Visualization
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» Achieve a higher last accuracy curve and a lower forgetting curve.
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New Enhancements
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/ Method Train Params | Memory Use | Times | \
§ LWF [24] 149.6M 32172MiB 1.54s/it i
| LWEF-VR [6] 149.6M 32236MiB 1.51s/it §
| ZSCL [47] 149.6M 26290MiB 3.94s/it i
| MoE-Adapters [45] 59.8M 22358MiB 1.58s/it
| Ours 7.8M 21116MiB 0.23s/it i
| }
‘ Enhancement 2
e EnaneeIent e ,

[ICCV 2025] Dynamic Multi-Layer Null Space Projection for Vision-Language Continual Learning.



Thank you for listening.



