

# **Dynamic Multi-Layer Null Space Projection for Vision-Language Continual Learning**

## Motivation

Overlooking modality-specific dynamics hinders effective forgetting mitigation in adapter-based VLM CL.

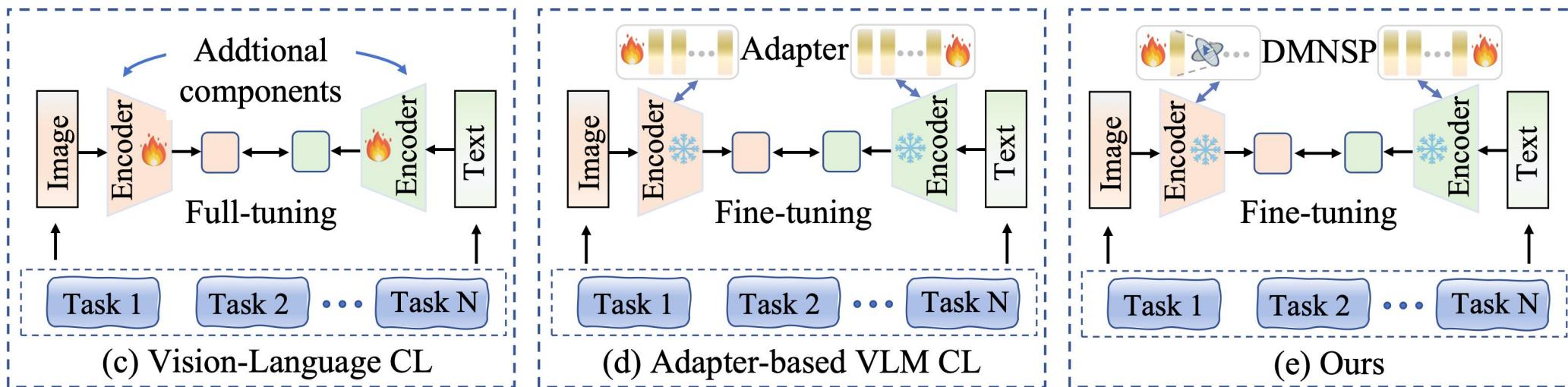
- **Suboptimal forgetting prevention.**
- **Inadequately explored modality parameter distribution shifts in VLM.**



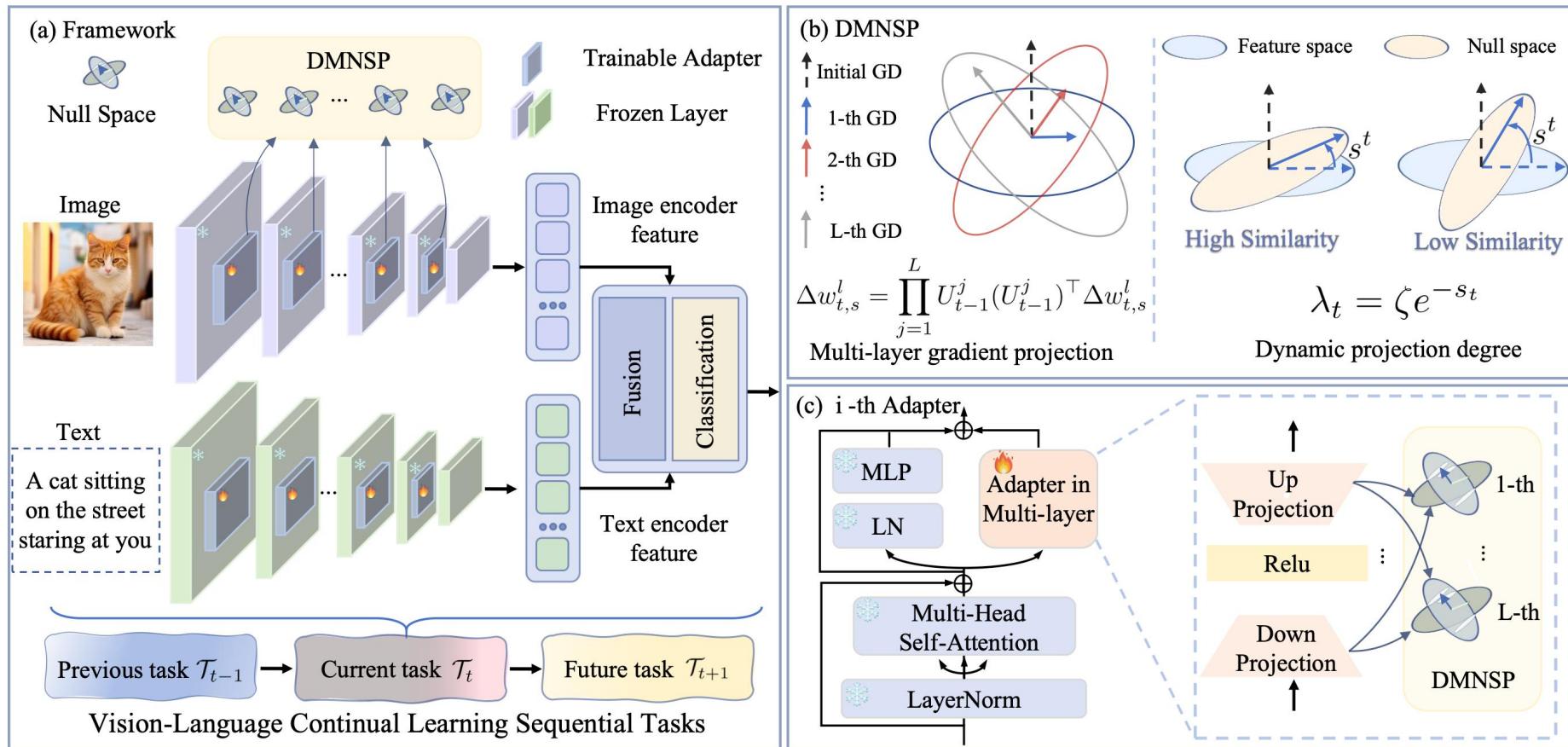
**Visual modality's** broader distribution increases forgetting risk.

## Our hypothesis

- Inhibiting shifts in **visual parameter distributions** can mitigate forgetting.


# DMNSP Challenge

## Our hypothesis


- Inhibiting shifts in **visual parameter distributions** can mitigate forgetting.

## Contribution

- We propose **asymmetric adapter training** to address modality-induced forgetting..
- We design **multi-layer** gradient projection with **dynamic** coefficients for CL.
- We achieve **state-of-the-art** in different CIL settings across different datasets.



# DMNSP Framework



$$\Delta \mathbf{w}_{t,s}^l = \prod_{j=1}^L \mathbf{U}_{t-1}^j (\mathbf{U}_{t-1}^j)^\top \mathbf{g}_{t,s}^l$$

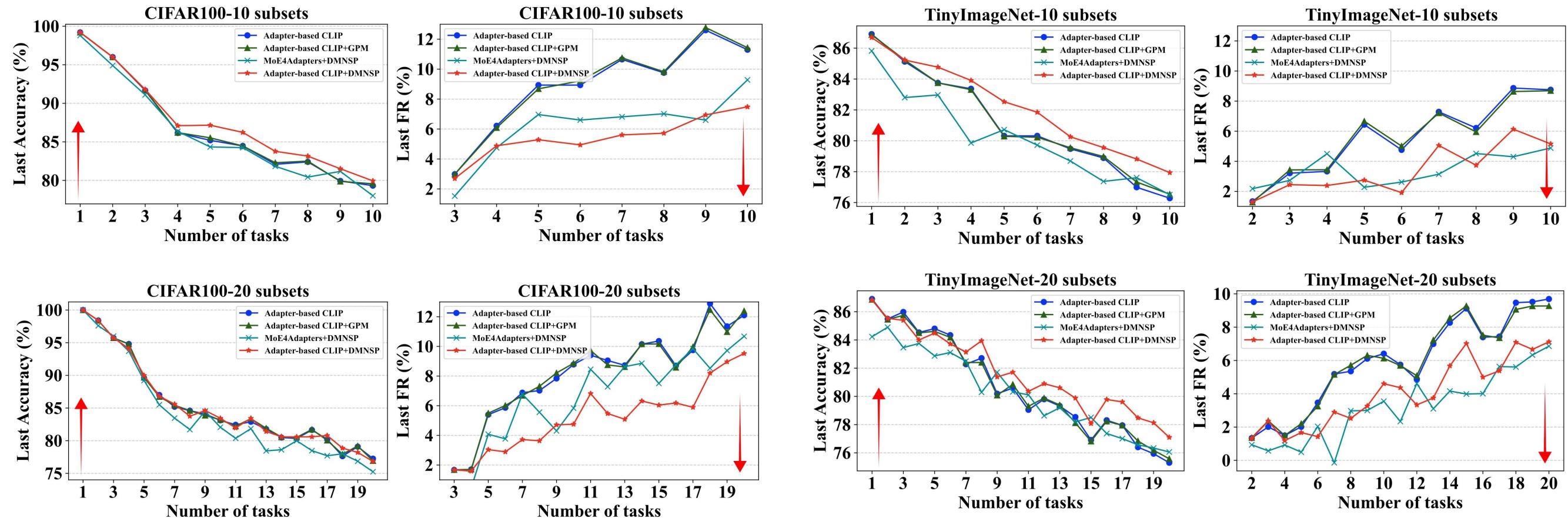
$$\lambda_t = \zeta e^{-s_t}$$

$$\Delta \mathbf{w}_{t,s}^l = \prod_{j=1}^L \lambda_t^j \mathbf{U}_{t-1}^j (\mathbf{U}_{t-1}^j)^\top \mathbf{g}_{t,s}^l$$

# DMNSP

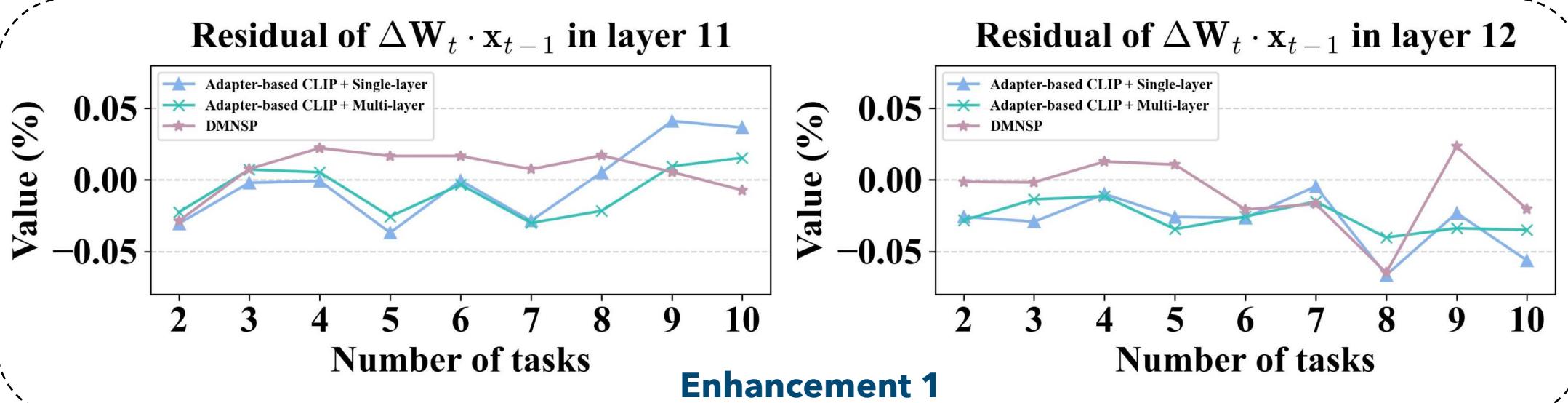
## Experiments

| Method                        | Venue      | 10 subset        |                  | 20 subset        |                  |
|-------------------------------|------------|------------------|------------------|------------------|------------------|
|                               |            | Avg. $\uparrow$  | Last $\uparrow$  | Avg. $\uparrow$  | Last $\uparrow$  |
| L2P [42]                      | CVPR'22    | 80.83 $\pm$ 1.39 | 74.60 $\pm$ 0.90 | 78.39 $\pm$ 0.94 | 72.09 $\pm$ 1.12 |
| DualPrompt [41]               | ECCV'22    | 81.39 $\pm$ 1.25 | 74.87 $\pm$ 0.85 | 79.12 $\pm$ 1.27 | 71.69 $\pm$ 1.06 |
| ESN [40]                      | AAAI'23    | 81.63 $\pm$ 1.10 | 75.11 $\pm$ 0.36 | 77.95 $\pm$ 0.76 | 70.57 $\pm$ 0.62 |
| CODAprompt [36]               | CVPR'23    | 81.32 $\pm$ 1.01 | 75.51 $\pm$ 0.81 | 78.07 $\pm$ 0.40 | 72.25 $\pm$ 0.78 |
| LAE [12]                      | CVPR'23    | 76.71 $\pm$ 0.10 | 71.70 $\pm$ 0.39 | 73.72 $\pm$ 0.05 | 66.98 $\pm$ 0.35 |
| InfLoRA [25]                  | CVPR'24    | 80.82 $\pm$ 0.24 | 75.65 $\pm$ 0.14 | 77.28 $\pm$ 0.45 | 71.01 $\pm$ 0.45 |
| EASE [48]                     | CVPR'24    | 81.73            | 76.17            | -                | -                |
| CPrompt [13]                  | CVPR'24    | 82.92 $\pm$ 0.70 | 77.14 $\pm$ 0.11 | 81.46 $\pm$ 0.93 | 74.79 $\pm$ 0.28 |
| RAPF [18]                     | ECCV'24    | 85.85            | 79.62            | 86.28            | 79.62            |
| VPT - NSP <sup>2</sup> [29]   | NeurIPS'24 | 84.84 $\pm$ 0.12 | 78.88 $\pm$ 0.50 | -                | -                |
| Adapter-based CLIP + GPM [34] | -          | 86.18 $\pm$ 0.08 | 80.11 $\pm$ 0.12 | 86.73 $\pm$ 0.19 | 80.65 $\pm$ 0.14 |
| Adapter-based CLIP+ TRGP [26] | -          | 86.24 $\pm$ 0.10 | 81.29 $\pm$ 0.09 | 86.07 $\pm$ 0.17 | 81.21 $\pm$ 0.13 |
| MoE4Adapters [45] + DMNSP     | -          | 86.45 $\pm$ 0.11 | 81.87 $\pm$ 0.16 | 87.06 $\pm$ 0.20 | 81.61 $\pm$ 0.18 |
| Adapter-based CLIP + DMNSP    | -          | 87.49 $\pm$ 0.07 | 81.94 $\pm$ 0.15 | 86.81 $\pm$ 0.16 | 82.72 $\pm$ 0.09 |


| Method                     | 5 subset          |                   | 10 subset         |                   | 20 subset         |                   |
|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                            | Avg. $\downarrow$ | Last $\downarrow$ | Avg. $\downarrow$ | Last $\downarrow$ | Avg. $\downarrow$ | Last $\downarrow$ |
| Adapter-based CLIP         | 3.34              | 7.97              | 4.56              | 8.75              | 5.33              | 9.79              |
| Adapter-based CLIP + GPM   | 3.30              | 7.98              | 4.50              | 8.69              | 5.35              | 9.27              |
| MoE4Adapters + DMNSP       | 2.26              | <b>4.16</b>       | 3.12              | 4.88              | <b>3.23</b>       | <b>6.86</b>       |
| Adapter-based CLIP + DMNSP | <b>2.15</b>       | 4.84              | <b>2.65</b>       | <b>4.84</b>       | 3.65              | 7.11              |

| Method                     | 10 subset         |                   | 20 subset         |                   | 50 subset         |                   |
|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|                            | Avg. $\downarrow$ | Last $\downarrow$ | Avg. $\downarrow$ | Last $\downarrow$ | Avg. $\downarrow$ | Last $\downarrow$ |
| Adapter-based CLIP         | 7.14              | 11.39             | 7.43              | 12.61             | 9.34              | 14.52             |
| Adapter-based CLIP + GPM   | 7.14              | 11.29             | 7.38              | 12.61             | 9.33              | 14.51             |
| MoE4Adapters + DMNSP       | 4.95              | 9.28              | 5.95              | 10.67             | 7.47              | 12.44             |
| Adapter-based CLIP + DMNSP | <b>4.36</b>       | <b>7.48</b>       | <b>4.73</b>       | <b>9.52</b>       | <b>7.39</b>       | <b>12.42</b>      |

- Achieve competitive results across **5** datasets and over **10** settings.
- Achieve a **lower** forgetting rate.


# DMNSP Visualization



- Achieve a **higher** last accuracy curve and a **lower** forgetting curve.

# DMNSP

## New Enhancements



| Method            | Train Params ↓ | Memory Use ↓    | Times ↓         |
|-------------------|----------------|-----------------|-----------------|
| LWF [24]          | 149.6M         | 32172MiB        | 1.54s/it        |
| LWF-VR [6]        | 149.6M         | 32236MiB        | 1.51s/it        |
| ZSCL [47]         | 149.6M         | 26290MiB        | 3.94s/it        |
| MoE-Adapters [45] | 59.8M          | 22358MiB        | 1.58s/it        |
| <b>Ours</b>       | <b>7.8M</b>    | <b>21116MiB</b> | <b>0.23s/it</b> |

**Enhancement 2**

**Thank you for listening.**