Colors See Colors Ignore: Clothes Changing ReID with Color Disentanglement

https://ucf-crcv.github.io/ReID/CSCI

CRCV Lab, UNIVERSITY OF CENTRAL FLORIDA

Priyank Pathak priyank@ucf.edu

Yogesh S Rawat yogesh@ucf.edu

Problem Statement: Clothes Changing ReID

Identify a person irrespective of change of clothes

Ignore appearance bias (clothes / environment)

• Real world, people change clothes:)

Current Research

- Clothes as "integer" labels
 - E.g. person is wearing cloth id 0
 - Predict classes (Almost all works)
 - Non-descriptive
 - Constant label across video

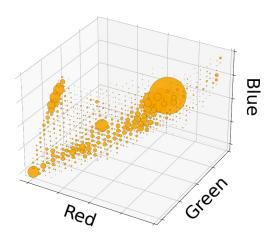
Computationally very heavy
What if person changes appearance in video
E.g. person removes "black hat"
Non scalable

Solution: Pixel Colors

- Colors cluster similar clothing
- Extract colors "efficiently"
 - RGB-only
 - Free of cost
 - Annotation free

Colors are contextual

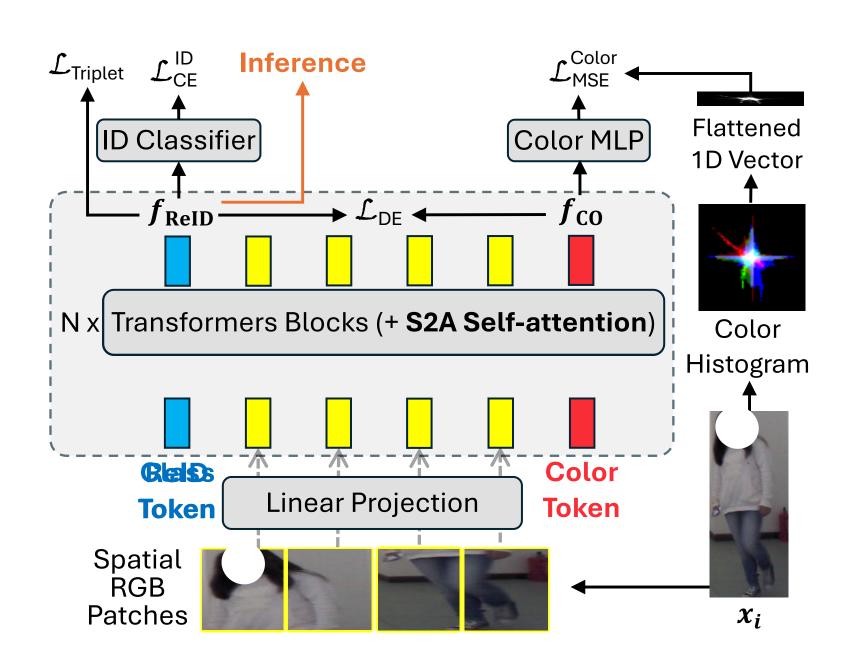
Colors are adaptive



Color Representation

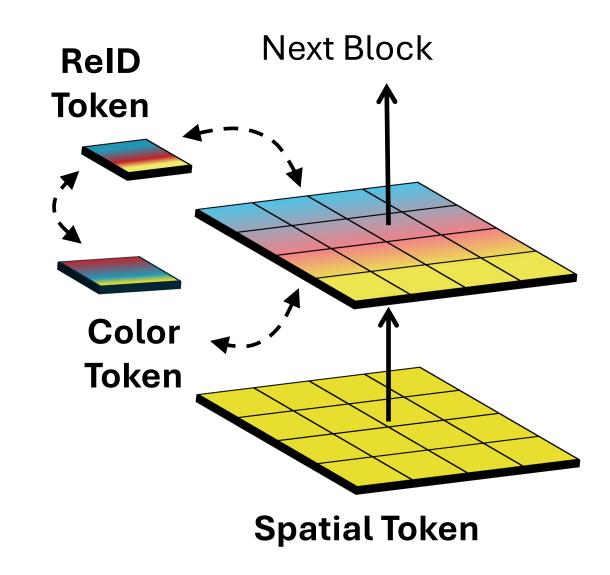
• "Pixel Binning": Count # of pixels in each channel

• "RGB – uv": 2D projection of colors (style GAN)


Pixel Binning

RGB-uv

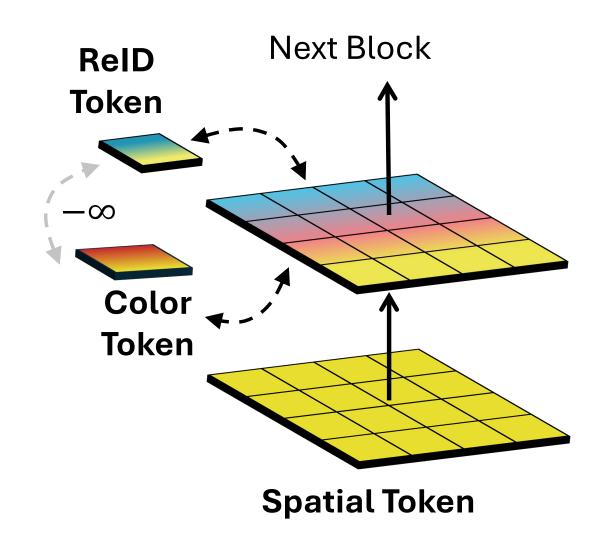
Color See, Color Ignore (CSCI)


- Transformers
- Efficient
- One Model (1 branch) to ReID and disentangle

What's S2A self-attention?

Traditional Self-attention

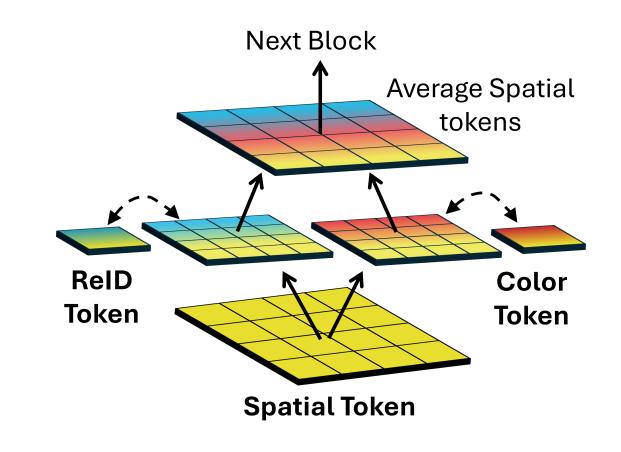
 100% information leak between ReID (biometrics) & Color tokens (appearance)



What's S2A self-attention?

Masked Self-attention

No direct leak


- ReID token influences weight Color token
 - Biometric affecting weight of appearance bias
 - & vice versa

Ours S2A self-attention?

- Two self-attention steps
- No direct leak

- **DO NOT** affect the weight
- Alternative: 2 transformer branches (infeasible)

Results

Color tokens Helps

Masked (no direct leak) helps

- S2A outperforms Masked
 - 4.4% gain in FLOP

Self-Attention	GFlop	LTCC	PRCC		
No Color Token	81.18	44.9	61.6		
Traditional	81.52	46.8	63.5		
Masked	81.52	46.7	65.3		
S2A (our)	84.74	47.8	66.2		

Results

 Works well with different backbones

Backbone	Self-Attention	LTCC		
	TCiP	35.2		
ViT-B	+ Clothes	36.5		
	+ CSCI (our)	38.8		
	Baseline	44.9		
EVA-02	+ Clothes	46.3		
	+ CSCI (our)	47.8		

Backbone	Self-Attention	LTCC		
	TransReID	31.1		
ViT-B	+ CSCI (our)	36.0		
	PAT	31.1		
	+ CSCI (our)	32.7		
ViT-S	TMGF	32.9		
VII-3	+ CSCI (our)	39.5		

Outperform "clothes integer labels"

Overall Image Results

			Ac	Additional LTCC			PRCC					
Method		Venue	Attributes		CC		General		CC		SC	
			Int.	External	R-1↑	mAP↑	R-1↑	mAP↑	R-1↑	mAP↑	R-1↑	mAP↑
ResNet	CAL [16]	CVPR'22	CL		40.1	18.0	74.2	40.8	55.2	55.8	<u>100</u>	99.8
	CCFA [18]	CVPR'23	CL		45.3	22.1	75.8	42.5	61.2	58.4	99.6	98.7
	FIRe ² [41]	TIFS'24	-	-	44.6	19.1	75.9	39.9	65.0	63.1	<u>100</u>	99.5
Multi-ResNets	3DInvar. [28]	ICCV'23	CL	Po+BS	40.9	18.9	-	-	56.5	57.2	-	-
	AIM [44]	CVPR'23	CL		40.6	19.1	76.3	41.1	57.9	58.3	<u>100</u>	<u>99.9</u>
	DCR. [10]	TCSVT'23	CL	BP+Co.	41.1	20.4	76.1	42.3	57.2	57.4	<u>100</u>	99.7
	CVSL [31]	WACV'24	CL	Po	44.5	21.3	76.4	41.9	57.5	56.9	97.5	99.1
	CCPG [32]	CVPR'24	CL	Po	46.2	22.9	77.2	42.9	61.8	58.3	<u>100</u>	99.6
Transformer	CLIP3D [29]	CVPR'24	-	BS+Text	42.1	21.7	-	-	60.6	59.3	_	_
	IRM [20]†	CVPR'24	CL	Text+BP	<u>46.7</u>	-	66.7	-	-	-	-	-
	EVA-02		-	-	44.9	23.1	80.3	45.9	61.6	59.0	<u>100</u>	99.9
	CSCI - Pix. Bi	n (our)	-	-	<u>46.7</u> +1.8	23.6 ^{+0.5}	80.8+0.5	45.9	<u>66.6</u> +5.0	60.7+1.7	<u>100</u>	99.9
	CSCI - RGB-u	v (our)	-	-	<u>47.8</u> +2.9	<u>24.4</u> ^{+1.3}	82.6 ^{+2.3}	<u>48.0</u> +2.1	<u>66.2</u> +4.6	<u>61.3</u> ^{+2.3}	<u>100</u>	<u>99.9</u>

Thank you See you in Hawaii

