
Exploiting Frequency Dynamics for Enhanced Multimodal Event-based Action Recognition

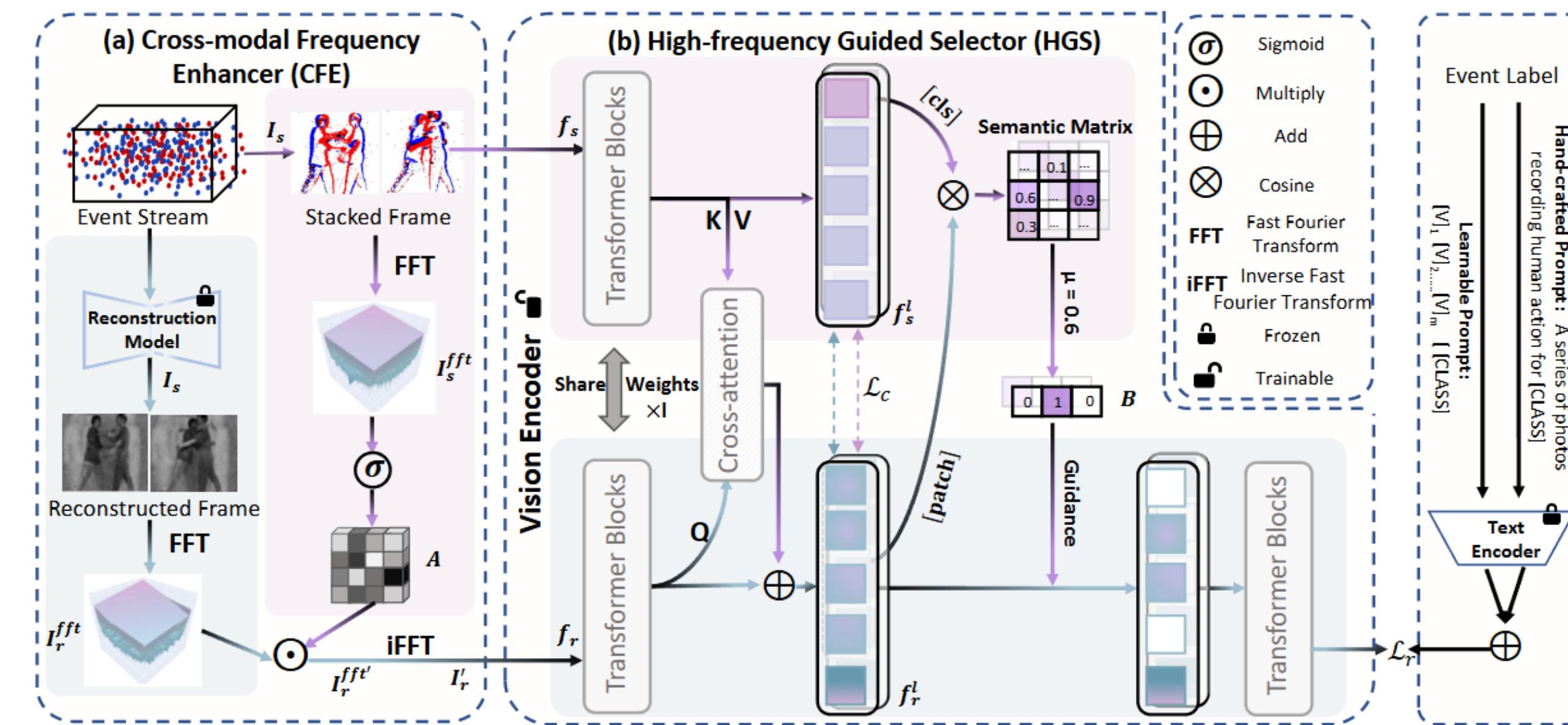
Meiqi Cao¹, Xiangbo Shu^{1*}, Xin Jiang¹, Rui Yan^{1,2}, Yazhou Yao¹ and Jinhui Tang³
 1 Nanjing University of Science and Technology. 2 Nanjing University. 3 Nanjing Forestry University.
 Email: {cmq123,shuxb,xinjiang,ruiyan,yazhou.yao}@njust.edu.cn, tangjh@njfu.edu.cn.

➤ Motivation

Previous multi-modal input approaches: independently extract features from paired RGB-Event modalities, both introducing excessive RGB data dependencies and disrupting the privacy-preserving property unique to event cameras.

Ours: takes a lightful reconstruct network to substitute RGB data while narrowing the modality divergence with events, thereby enabling enhanced unified multimodal perception.

➤ Overview


(i) Complementary event modalities (reconstructed and stacked frames) undergo frequency-domain refinement via CFE, which amplifies edge dynamics while preserving textural in reconstructed counterparts;

(ii) During the unified visual encoding process of CLIP, the HGS is employed to capture semantic-consistency tokens across modalities, which effectively eliminates spatiotemporally redundant features;

(iii) Event features and text features derived from the text/vision encoder are contrasted for activity recognition.

➤ Contribution

- **A privacy-preserving paradigm** inspired by event-to-image generates texture-enriched surrogate frames as alternatives to RGB images, eliminating auxiliary data acquisition while bridging the modality gap with events.
- **An Enhanced-Multimodal Perceptual framework** that hierarchically explores intrinsic multi-modal cues from raw event streams through dual-stage innovations at representation and feature levels.

➤ Comparative performance for EAR

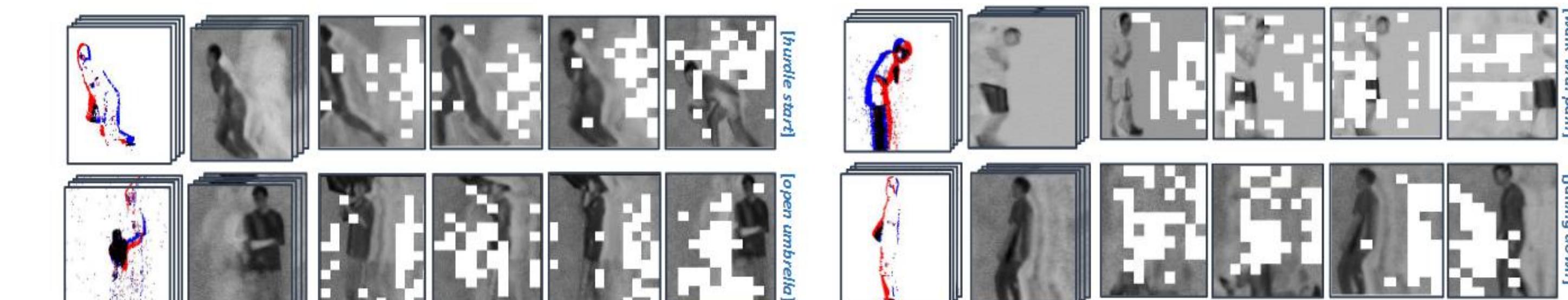
Method	Event Representation		Top-1 Accuracy (%)		
	Frame-based	Point-based	PAF	SeAct	DVS128 Gesture
Motion SNN [28]	-	✓	78.10	-	92.70
Slayer [41]	-	✓	-	-	93.64
MST [51]	✓	-	88.21	-	-
EV-ACT [14]	✓	-	92.60	-	-
EventTransAct [10]	✓	-	-	57.81	97.92
EvT [39]	✓	-	-	61.30	96.20
SpikePoint [37]	-	✓	90.60	-	98.74
SpikMamba [8]	✓	-	96.28	71.02	99.01
ExACT [57]	✓	-	94.83	67.24	98.86
EventCrab [7]	✓	✓	96.49	72.41	98.80
Ours	✓	-	99.80 (+3.31)	75.00 (+2.59)	98.86 (-0.15)

➤ Method

- The class probability p for the action recognition are obtained as:

$$p = \text{softmax}(f^e(f^t)^\top) \quad c = \text{argmax}(p)$$
- Cross-modal Frequency Enhancer: strategically leverages frequency traits across modalities to refine event representation:

$$I_s^{\text{fft}} = \text{FFT}(I_s), \quad I_r^{\text{fft}} = \text{FFT}(I_r)$$


$$A = \text{sigmoid}(I_s^{\text{fft}}), \quad I_r^{\text{fft}'} = I_r^{\text{fft}} \odot A, \quad I_r' = \text{iFFT}(I_r^{\text{fft}'}).$$

- High-frequency Guided Selector: strategically leverages high-frequency [cls] token from stacked frames to steer the attention mechanisms of reconstructed frames, enabling selective focus on cross-modal consistent semantic regions while suppressing modality-specific interference:

$$Q = W_q f_r^l, \quad K = W_k f_s^l, \quad V = W_v f_s^l,$$

$$\text{sim}(f_s^{\text{cls}}, f_s^l) = \frac{f_s^{\text{cls}}^\top f_s^l}{\|f_s^{\text{cls}}\| \|f_s^l\|} \quad S = \{\text{Top}_K(B)\}$$

- Visualization of cross-modal consistent tokens selected by HGS

