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Contributions

» Propose a cost-effective method to automatically generate mask prompts from BLIP, providing effective guidance

for SAM without extra training or fine-tuning.

» Design an Adaptive Refinement Module (ARM) to refine prompts and fine-tune SAM’s encoder, further enhancing

SAM's segmentation accuracy and robustness.

» Introducing auxiliary embeddings from BLIP provides SAM with richer features.
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Method
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»  BLIP automatically generates multimodal data from the input image and uses it to create the initial multimodal prompts and the auxiliary
embedding.

»  The Adaptive Refinement Module (ARM) addresses the locality issue of initial prompts by using multiple adapters to extract visual

information from BLIP and SAM. It integrates attention weights to refine prompts into more accurate masks and simultaneously fine-tunes
SAM’s image encoder.

»  Finally, the SAM decoder receives image embedding, dense mask prompt embedding, and auxiliary sparse embedding to tackle the COD task.
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Experimental Results

— - CHAMELEON CAMO CODI0K NC4K
* [Sm Fp= Er=®= M | Sm Fpe Ere® M | Sm Fpe Epe== M | Sm  Fpe= Ere N
ZoomNet [42] CVPRy | 0901 0876 0947 0023 | 0.820 0.805 0889 0066 | 0.837 0.777 0896 0029 | 0852 0.826 0903 0.044
SegMaR [25] CVPRy, |0906 0888 0959 0025|0816 0803 0884 0071|0833 0774 0906 0.034 | 0.841 0826 0907 0.046
UEDG [39] TMM,; | 0911 0894 0968 0023 | 0863 0856 0929 0.048 [ 0.858 0812 0934 0025|0879 0864 0935 0.035
TinyCOD [58] ICASSP;; | 0.887 0861 0958 0030 [ 0.822 0807 0899 0066 | 0811 0742 0903 0036 | 0.843 0817 0910 0.047
MSCAF-Net [36] ~ TCSVTy | 0912 0902 0970 0.022 | 0.873 0.867 0937 0046 | 0.865 0823 0936 0.024 | 0.887 0874 0942 0.032
FSPNet [24] CVPRy; | 0909 0890 0965 0023 | 0856 0846 0928 0050 | 0.851 0794 0930 0.026 |0.879 0859 0937 0.035
FEDER [16] CVPRy; | 0.887 0868 0954 0030 | 0.802 0789 0873 0071 | 0.822 0768 0905 0.032 | 0.847 0833 0915 0.044
FSNet [49] TIP; | 0905 0891 0975 0022|0880 0878 0941 0.041 [ 0.870 0.833 0948 0.023 | 0.891 0.880 0948 0.031
CRNet [19) AAAL; | 0818 0792 0909 0046 | 0735 0707 0830 0092 | 0733 0636 0845 0049 | — —  —  —
SDRNet [13] KBSy, | 0914 0901 0961 0024|0872 0867 0932 0049 [ 0871 0828 0936 0023 | 0.889 0876 0940 0.032
PRNet [23] TCSVT, | 0915 0902 0973 0020 | 0872 0.867 0930 0050 | 0873 0839 0943 0022 | 0.891 0881 0942 0.031
CamoFormer-R [59] ~ TPAML; | 0.898 0880 0949 0026 | 0.817 0801 0.883 0068 | 0.838 0.786 0928 0.029 | 0.854 0829 0908 0.042
CamoFormer-P [59]  TPAMIL, | 0910 0.898 0966 0022 | 0.872 0868 0938 0.046 | 0.869 0.829 0939 0023 | 0.892 0.880 0946 0.030
ZoomNeXtyuas [43]  TPAMIy | 0928 0919 0977 0.017 [ 0.885 0.886 0942 0042 | 0.895 0864 0951 0.018 | 0.900 0.891 0948 0.028
ZoomNeXtyua [43]  TPAMIy | 0922 0908 0969 0017 [ 0.874 0873 0931 0.047 | 0.887 0.856 0945 0019 | 0.892 0.884 0941 0.030
DSAM [60] ACMMMy | — —  —  — [0832 0834 0920 0061|0845 0805 0930 0033|0872 0864 0942 0.040
MAMIFNet [55] IFs | 0914 0899 0959 0021 | 0872 0.870 0935 0.045 | 0869 0826 0940 0.023 | 0.890 0878 0943 0.031
COMPrompter [64]  SCIS,s | 0.885 0.864 0957 0030 | 0.853 0856 0931 0054 | 0860 0826 0946 0.027 | 0.880 0876 0946 0.036
Ours — 0932 0922 0964 0023 | 0.887 0883 0935 0046 | 0.909 0.885 0955 0.020 | 0.906 0.897 0947 0.033

Our method achieves outstanding performance, particularly excelling in and . This demonstrates its superior

target localization and structure capture of camouflaged objects.
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Experimental Results
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Our approach achieves a more significant overlap with the GT than other SOTA models, effectively
segmenting completely camouflaged objects.

We also visualize both the initial and ARM-
refined prompts. Initial prompts often cover only
partial target regions due to domain shifts, while
ARM-refined prompts achieve more complete
coverage.

Initial Refined by ARM
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