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Background

e Diffusion models excel across dense vision tasks but rarely generalise to unseen conditions.
e Different tasks (segmentation, depth, dehaze) exhibit disparate domain shifts..
e Motivate a solution that extracts structural content and detail cues for robust predictions.
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Contribution

> This paper presents HarDiff, a diffusion-based method for generalizable dense vision

tasks, aiming to prompt the robustness and transferability across various unseen
domains.

> Low-Frequency Training Process: task-related content

> High-Frequency Sampling Process: utilizing it as a detail-oriented guidance

> Extensive experiments on three cross-domain dense pixel prediction tasks with
twelve datasets show its superiority over the baselines
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e Low-frequency bands capture global semantics (object position & shape).
e High-frequency bands capture fine details (textures & edges).
e Hartley transform operates in the real domain and fuses frequencies effortlessly.

e This dual-property motivates separate treatments for training (content) and sampling
(detail).
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Method & Framework

e ConvNeXt encoder extracts multi-scale features.
e Low-frequency learning injects V[90%,100%] to reinforce structural priors.

e High-frequency learning injects V[0%,10%] to recover fine details.

e Unified map decoder handles segmentation, depth and dehaze within one diffusion.
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Numerical Results

e HarDiff achieves the highest mloU across all domains.
e Average improvement of =2% mloU over the second best method.

e Beyond segmentation, HarDiff attains state-of-the-art depth estimation and haze removal.
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Qualitative Results
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Conclusion

e Proposed HarDiff decouples diffusion into low-frequency training and
high-frequency sampling, guided by Hartley analysis.

e Achieves state-of-the-art performance on semantic segmentation, depth estimation
and dehaze across multiple unseen domains.

e Extensive experiments show the critical role of extreme frequency bands in
generalising dense vision models.

e Future work: explore other frequency transforms, combine with adaptive attention,

and apply to broader vision tasks.
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Thanks for your attention!
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