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Background

• Diffusion models excel across dense vision tasks but rarely generalise to unseen conditions.
• Different tasks (segmentation, depth, dehaze) exhibit disparate domain shifts..
• Motivate a solution that extracts structural content and detail cues for robust predictions.

[2] [3]

file:///home/oai/share/A_Simple_yet_Mighty_Hartley_Diffusion_Versatilist_for_Generalizable_Dense_Vision_Tasks.pdf#:~:text=Abstract%20Diffusion%20models%20have%20demonstrated,Introduction
file:///home/oai/share/A_Simple_yet_Mighty_Hartley_Diffusion_Versatilist_for_Generalizable_Dense_Vision_Tasks.pdf#:~:text=As%20illustrated%20in%20Fig,intricate%20patterns%20and%20subtle%20variations


Contribution 

➢ This paper presents HarDiff, a diffusion-based method for generalizable dense vision 
tasks, aiming to prompt the robustness and transferability across various unseen 
domains.

➢ Low-Frequency Training Process: task-related content

➢ High-Frequency Sampling Process:  utilizing it as a detail-oriented guidance

➢ Extensive experiments on three cross-domain dense pixel prediction tasks with 
twelve datasets show its superiority over the baselines
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Observation

• Low-frequency bands capture global semantics (object position & shape).
• High-frequency bands capture fine details (textures & edges).
• Hartley transform operates in the real domain and fuses frequencies effortlessly.
• This dual-property motivates separate treatments for training (content) and sampling 
(detail).
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Band Response Analysis

• Highest band V[0,10%) encodes detail 
for discriminating unseen domains.
• Lowest band V[90%,100%) encodes 
structural content essential for 
recognising in-domain samples.
• Removing either band significantly 
hurts accuracy on source and target 
domains.
• These findings inspire separate 
low- and high-frequency modules.
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Method & Framework

• ConvNeXt encoder extracts multi-scale features.
• Low-frequency learning injects V[90%,100%] to reinforce structural priors.
• High-frequency learning injects V[0%,10%] to recover fine details.
• Unified map decoder handles segmentation, depth and dehaze within one diffusion.
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Numerical Results

• HarDiff achieves the highest mIoU across all domains.
• Average improvement of ≈2% mIoU over the second best method.
• Beyond segmentation, HarDiff attains state-of-the-art depth estimation and haze removal.
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Qualitative Results
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Conclusion

• Proposed HarDiff decouples diffusion into low-frequency training and 
high-frequency sampling, guided by Hartley analysis.

• Achieves state-of-the-art performance on semantic segmentation, depth estimation 
and dehaze across multiple unseen domains.

• Extensive experiments show the critical role of extreme frequency bands in 
generalising dense vision models.

• Future work: explore other frequency transforms, combine with adaptive attention, 
and apply to broader vision tasks.
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Thanks for your attention!
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