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Dynamlcs perceptlon In robotics and beyond

Robotics: Steerlng actlons Less data needed Surgical room: Intra-operative assistance.

0S:11:30 12/21/18

In Insect SC|ence 2024. [ 0 o | DeepLabCut. In Nature neuroscience, 2018. |

Biology and neuroscience: Tracking and analysis of animal movements.
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Dynamics perception in robotics and beyond

1. Efficiency.

2. Precision.

3. Robustness to camera setups
(number, positions, etc.)




Overview of related problems

Point Correspondences in 2D

LoFTR
# Matches: 1684

= LoFTR. In CVPR, 2021. MPI Sintel. In ECCV, 2012. == o " AllTracker. In ICCV, 2025.

Feature matching. Optical flow. Point tracking in 2D.

Point correspondences in 3D

& 3D tracks (view 2) 4

Dynamic 3DGS. In 3DV, 2024.

Multi-view 3D point tracking.

SpatialTracker. In CVPR, 2024. DELTA In ICLR 2025 Col

DWAREF. In AAAI, 2020.

Scene flow. Monocular 3D point tracking.
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Point correspondences in 2D

LoFTR
# Matches: 1684

MPI Sintel. In ECCV, 2012.

Feature matchlng Tracklng static pomts Optical flow: Dynamic, short-term.

| AllTracker. In ICCV, 2025.
Point tracking (2D): Dynamic points, long-term.
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Point correspondences in 3D

3D tracks (view 2) 4

DELTA. In ICLR, 2025. 5

-
e

Dynamic 3DGS. In 3DV, 2024. GauSTAR. In CVPR, 2025.

Multi-view 3D point tracking: Better coverage. Only optimization-based.
Require +27 cameras or rely on monocular priors.
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Point correspondences in 3D

MVTracker (ours):
1. Runs at 14.9 FPS1.

2. Works with as few as 2-4 cameras.
3. Directly leverages multi-view input.
4. State-of-the-art performance.

1Measured on an NVIDIA H200 for 512x384 inputs and 4 views.
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Fusing multi-view features into a point cloud

MVTracker (ours):

 Data-driven prior using a transformer.

* Contribute train. and eval. datasets.

* Flexible to a different number of cameras,
their arrangements, and the depth source. Fused 3D feature point cloud.

SpaTracker (CVPR’24): Triplane correlation. 0urs EfflClent kNN Correlatlon iIn point cloud.
Overlap and compression.—Information loss.
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Multi-view 3D point tracking

4 Kinect Cameras
(RGB + Depth)

Dataset: DexYCB

-4

Camera Poses (calibrated)
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Multi-view 3D point tracking

.=

4 Kinect Cameras " \
(RGB + Depth) |

IIIIIIIIIIIIIIIIIIII
N1 sl o ,

Dataset: DexYCB

Camera Poses (calibrated)

Inputs: Outputs:

 Multi-view RGB: (V, T, HxWx3). ¢ Predicted tracks: (N, T, 3).
e Depth maps: (V, T, HxWx1). ¢ Predicted visibility: (N, T, 1).
 |ntrinsics: (V, T, 3, 3).

 EXxtrinsics: (V, T, 3, 4).

3D query points: (N, 4) as txyz. Notation: V views; T frames; N tracks.
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Fused 3D feature point cloud + transformer
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Main comparison (4 cameras)

MV-Kubric DexYCB Panoptic Studio
(simulation depth) (estimated depth) (optim.-based depth)

45.7 66.5

optimization-/ Dynamic 3DGS 3DV 2024 30.4
based Shape of Motion ICCV 2025* 57.8

726l
65.8
69.5

LocoTrack ECCV 2024 59 5

2DPT « CoTracker2 ECCV 2024 54 o6
CoTracker3d ICCV 2025*

" DELTA ICLR 2025 [Ny

3DPT SpaTrackerV2 ICCV 2025*
(monocular) SpaTracker CVPR 2024

TAPIP3D NIPS 2025 |

3DPT Triplane Baseline - -
(multi-view) | MvTracker (ours) ICCV 2025+

0 15304560 7590 0 16 32 48 64 80 0 15 30 45 60 75 90

*concurrent work Average Jaccard 1 Average Jaccard 1 Average Jaccard 1
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Accuracy improves with more cameras

DexYCB (estimated depth)

~
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Stable results across camera placements

Panoptic Studio DexYCB

Camera placement



Stable results across camera placements

Camera placement

>

Panoptic Studio

DexYCB

18

PStudio [18] DexYCB [3]
Method

A B C A B C
Dynamic 3DGS [23] 66.5 50.8 56.6 457 - -
Shape of Motion [35] 72.6 64.3 66.8 36.2 —  —
LocoTrack [5] 65.8 57.9 63.7 27.8 40.9 429
DELTA [24] 68.1 61.1 65.9 36.5 43.3 47.6
CoTracker2 [16 69.5 62.3 66.4 28.8 42.0 44.4
CoTracker3 [17 66.3 70.9 29.4 43.8 46.3
SpaTracker [38] 61.5 54.8 57.8 58.3 57.9 63.8
Triplane Baseline \  65.1 59.9 63.5 57.5 62.0
MVTracker (ours) 75.7 83.2 71.0 71.2

+15.4% +18.1%
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MVTracker (ours)

Red lines |nd|cate distance to ground truth.
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MVTracker (ours)

Hed lines Indicate distance to ground truth.
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Depth source:
Blender simulation

4 Cameras (synchronized)

Camera Poses (calibrated)

+

Blender-simulated Depth

Dataset: MV-Kubric




Depth source: g8
Kinect camera . _°

4 Kinect Cameras
(RGB + Depth)

Camera Poses (calibrated)

Dataset: DexYCB



Depth source:
DUSt3R1 estimates

4 Cameras (synchronized)

Camera Poses (calibrated)

¢

DUSt3R1-estimated Depth

Dataset: DexYCB

IDUSt3R: Geometric 3D vision made easy. In CVPR, 2024.



Depth source:
Studio capture

4 Cameras (synchronized)

y ,/"“5

. it
i 5
. |
Camera Poses (calibrated)
Studio Capture Depth i
Dataset: 4D-DRESS
ablo o404




Conclusion and key takeaways

MVTracker (ours):
* First data-driven multi-view point tracker.
 Fuses multi-view features into a point cloud.

 Robust to number of cameras, camera rigging, depth source and noise.
» Significant gains over monocular and multi-view baselines.

 Main limitations:
 Dependence on multi-view depth estimators.
* Jested only within bounded scenes.
 \We need more data. More Is more.
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Frequently asked questions

1. Can MVTracker run online? Yes, at 14.9 FPS using sliding windows.
2. Can tracked points only be added at the first frame? No, at any frame.
3. What is the scale of the training dataset? 5000 sequences of MV-Kubric.
4. Can MV Tracker be used with a stereo camera / small baseline? Yes, but this
would amount to monocular 3D point tracking (after stereo depth estimation).
5. Does MVTracker regress invisible point locations?
During training yes, but we didn’t benchmark this. [W] 3
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