Learning Streaming Video Representation via Multitask Training
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Paradigm Shifting of Video Backbone

*  Why Streaming Video!

/
Embodied Al

* Key Attributes

* frame-by-frame processing
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Online Action Detection[|]

* low-latency decision making

User Queries

Streaming

° Iong-term context preservation

Non-Streaming

[1] Roeland De Geest, et al. "Online Action Detection." ECCV 2016

“What is the man doing?”

[PROCESSING]

“Has the matador got hit?” “Does he succeed in his performance?”’
“Bullfighting.” “No.” “Yes.”
[PROCESSING] [PROCESSING] “Bullfighting” ...



Paradigm Shifting of Video Backbone

Offline Video Backbone VideoLLM
* Responding after seeing the entire video * Requires large amount of data
* Video-text contrastive pairs * Unable to offer fine-grained video representation
¢ OOM when processing hour-long videos *  Only supports text output
* Fine-grained video representation * Accepts streaming input
buIIfighting [ LLM ]
Video Encoder Image Encoder
(e.g. TimeSformer) (e.g. CLIP)

T P

& & £ »n & 8




Main Contribution

StreamFormer

* Architecture: Divided space-time attention by combing (1) causal temporal attention and (2) SigLIP w/ LoRA.
* Method: Unifying multiple spatiotemporal video tasks into a visual-language alignment framework.

* Data: Instead of web-scale video-text pairs, human-annotated video datasets of various granularities.
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Architecture

Image
Encoder

i) pre-trained encoder

Text
Encoder

v

Video
Encoder

Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.

ii) streaming video backbone

————————————————————

'space attn

T

;

causal time attn

____________________

A
e o e = - - - - - ————

trainable

- frozen

J
= LoRA



Architecture

= Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.
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= Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.

s e

&

StreamFormer

Jfdassees

Patch Embedding




Architecture
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Architecture

= Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.
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Architecture

= Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.
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Video-Language Pre-training

* Video-language alignment is more than a simple video-text pair:

Learning from Learning from
comprehensive annotations naive video-text pairs

[Global] Q: Has the matador got hit? A: No. Q: Does he succeed in his performance?

[Temporal]  [0-2s] No action [2-4s] Bullfighting [4-75] Bullfighting



Video-Language Pre-training

* Multitask formulation: unify various video understanding tasks in a visual-text alighment framework.

 Global-level tasks

» one label/narration per video clip (e.g. action recognition, video-text retrieval)

* Temporal-level tasks

» one label/narration per frame (e.g. temporal action localisation, temporal video grounding)

* Spatial-level tasks

» one label/narration per pixel (e.g. video object segmentation, referring video object segmentation)

The bullfighter waves the

é‘ & 5N — A=gWV,T) |~ muleta at the bull.

We train StreamFormer by optimising the visual-text alignment score A




Video-Language Pre-training

* Video representations

spatial
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A video clip of snowmobiling. Text 0ooOoo &
A video clip of playing football. Encoder RCxd




Video-Language Pre-training

* Multitask formulation: unify various video understanding tasks in a visual-text alighment framework.

Global-level tasks (e.g. recognition)
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Video-Language Pre-training

Pre-training datasets

Task Pre-training Dataset Scale
Global-level

Action Recognition K400, SSv2 400K
Video Text Retrieval MSRVTT, MSVD, ActivityNet, DiDeMo, LSMDC, VATEX 94K
Temporal-level

Temporal Action Localisation ActivityNet-1.3, FineAction, HACS 180K

Temporal Video Grounding

CharadesSTA, QVHighlights, TaCoS, ANet-Captions, DiDeMo, QuerYD 120K

Spatial-level

Video Instance Segmentation YouTubeVIS-19, LVVIS, COCO 120K
Referring Video Object Segmentation MEVIS, Refer-YouTube-VOS 36K
Total - ~1M

T We sample data from the same task at each mini-batch, and use gradient accumulation to perform backpropagation
and parameter update collectively after iterating through all tasks.



Downstream Application

* Freeze the pre-trained video backbone and append task-specific head

No action Bullfighting

Online Action
Detection Head [I]
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Stream Online Video Inst. -
Former Seg. Head [2]

\[ Large Language ]_> ___ Ql: Has the matador got hit?

Model [3] Al: No.

[1] Jiahao Wang, et al. "Memory-and-anticipation transformer for online action understanding." ICCV 2023.
[2] Kaining Ying, et al. “Ctvis: Consistent training for online video instance segmentation.” /CCV 2023.
[3] Haotian Liu, et al. “Visual instruction tuning.” NeurIPS 2023. 16



Downstream Application

Experimental Setting
* Keep all settings the same except for visual encoder (StreamFormer vs. SigLIP)
* Add specific task heads for each downstream

* OAD: training MAT[I] with extracted video features.

* OVIS: ViT-Adapter with CTVIS[2] training.

* VideoQA: LLaVA-Next[3] pipeline added with video samples.

i) Online Action Detection ii) Online Video Instance Segmentation
THUMOS (mAP) YouTube-VIS-19 (AP, AR)
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[1] Jiahao Wang, et al. "Memory-and-anticipation transformer for online action understanding." /CCV 2023.
[2] Kaining Ying, et al. “Ctvis: Consistent training for online video instance segmentation.” /CCV 2023.
[3] Haotian Liu, et al. “Visual instruction tuning.” NeurIPS 2023.

iii) Video Question Answering
VideoMME, MLVU (Acc)

50
48
46
a4
42
40
38
36

BSigLIP B StreamFormer

VideoMME

MLVU



Downstream Application

Bi-directional vs Causal time attention w/ kv-cache (ours)

* Inference Efficiency
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Conclusion

* Streaming video representation learning made possible by multi-granularity task training.

* Video representation learning needs to be revolutionized!

Feel free to chat!

* Homepage: go2heart.github.io
* Email: cain.y.yan@gmail.com
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