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• Key Attributes

• frame-by-frame processing 

• low-latency decision making

• long-term context preservation Streaming

Non-Streaming

User Queries “Has the matador got hit?”

“No.”

“What is the man doing?”

“Bullfighting.”

“Does he succeed in his performance?”

“Yes.”

[PROCESSING] [PROCESSING] [PROCESSING] “Bullfighting” …

• Why Streaming Video?

Embodied AI Autonomous Driving

Paradigm Shifting of Video Backbone
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Online Action Detection[1]

[1] Roeland De Geest, et al. "Online Action Detection." ECCV 2016



Offline Video Backbone

• Responding after seeing the entire video

• Video-text contrastive pairs

• OOM when processing hour-long videos

• Fine-grained video representation

Paradigm Shifting of Video Backbone

Video Encoder 
(e.g.  TimeSformer)

bullfighting

Image Encoder
(e.g.  CLIP)

· · ·

LLM

· · ·

VideoLLM

• Requires large amount of data

• Unable to offer fine-grained video representation

• Only supports text output

• Accepts streaming input
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StreamFormer

• Architecture: Divided space-time attention by combing (1) causal temporal attention and (2) SigLIP w/ LoRA.

• Method: Unifying multiple spatiotemporal video tasks into a visual-language alignment framework.

• Data: Instead of web-scale video-text pairs, human-annotated video datasets of various granularities.

Video 
Encoder

space attn
❄

causal time attn

❄

trainable

frozen

LoRA
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Main Contribution
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Architecture

§ Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.

Image 
Encoder

Text 
Encoder

i) pre-trained encoder ii) streaming video backbone

Video 
Encoder

space attn
❄

causal time attn

❄

trainable

frozen

LoRA
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Architecture
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StreamFormer
🔥

Patch Embedding
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Architecture
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🔥
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Video-Language Pre-training

• Video-language alignment is more than a simple video-text pair:

Learning from 
comprehensive annotations

Learning from 
naïve video-text pairs
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Video-Language Pre-training

• Multitask formulation: unify various video understanding tasks in a visual-text alignment framework.

𝒜 = 𝑔(𝑉, 𝑇)· · ·

• Global-level tasks
Ø  one label/narration per video clip (e.g. action recognition, video-text retrieval)

• Temporal-level tasks

Ø  one label/narration per frame (e.g. temporal action localisation, temporal video grounding)

• Spatial-level tasks
Ø  one label/narration per pixel (e.g. video object segmentation, referring video object segmentation)

The bullfighter waves the 
muleta at the bull.

We train StreamFormer by optimising the visual-text alignment score	𝒜
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Video-Language Pre-training

A video clip of snowmobiling.

Video 
Encoder

Text 
Encoder

GlobalTemporalSpatial

A video clip of playing football.

· · ·

spatial 
attention 
pooling

last
frame

𝑅!×#×$×%
𝑅!×% 𝑅%

𝑅&×%

• Video representations

• Text representations

visual-text alignment 
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Video-Language Pre-training

• Multitask formulation: unify various video understanding tasks in a visual-text alignment framework.

𝒜!"#$%" = 𝑣&𝑡&' ∈ 𝑅(×*

• Global-level tasks (e.g. recognition)

𝑣& ∈ 𝑅(×+

𝑡& ∈ 𝑅*×+

• Temporal-level tasks (e.g. localisation)

𝑓& ∈ 𝑅,×+

𝑡& ∈ 𝑅,×*×+
𝒜-./0#1%" = 𝑓&𝑡&' ∈ 𝑅,×*

• Spatial-level tasks (e.g. segmentation)

𝐹& ∈ 𝑅,×2×3×+

𝑡& ∈ 𝑅,×2×3×*×+
𝒜40%-5%" = 𝐹&𝑡&' ∈ 𝑅,×3×2×*

action label

frame label

pixel label

𝐿*6

𝐿*6

𝐿*6



15

Video-Language Pre-training

• Pre-training datasets

† We sample data from the same task at each mini-batch, and use gradient accumulation to perform backpropagation 
and parameter update collectively after iterating through all tasks.
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Downstream Application

Stream
Former

Online Action 
Detection Head [1]

Online Video Inst. 
Seg. Head [2]

Large Language 
Model [3]

No action Bullfighting

Q1: Has the matador got hit?    

A1: No.     

· · ·

· · ·

· · ·

· · ·

❄

• Freeze the pre-trained video backbone and append task-specific head

[1] Jiahao Wang, et al. "Memory-and-anticipation transformer for online action understanding." ICCV 2023.
[2] Kaining Ying, et al. “Ctvis: Consistent training for online video instance segmentation.” ICCV 2023.
[3] Haotian Liu, et al. “Visual instruction tuning.” NeurIPS 2023.



i) Online Action Detection
THUMOS (mAP)

ii) Online Video Instance Segmentation
YouTube-VIS-19 (AP, AR)

iii) Video Question Answering
VideoMME, MLVU (Acc)

Experimental Setting

• Keep all settings the same except for visual encoder (StreamFormer vs. SigLIP)

• Add specific task heads for each downstream

• OAD: training MAT[1] with extracted video features.

• OVIS:  ViT-Adapter with CTVIS[2] training.

• VideoQA: LLaVA-Next[3] pipeline added with video samples.

Downstream Application

[1] Jiahao Wang, et al. "Memory-and-anticipation transformer for online action understanding." ICCV 2023.
[2] Kaining Ying, et al. “Ctvis: Consistent training for online video instance segmentation.” ICCV 2023.
[3] Haotian Liu, et al. “Visual instruction tuning.” NeurIPS 2023. 17



OOM OOM
• Inference Efficiency

• Data Efficiency

Downstream Application
Bi-directional vs Causal time attention w/ kv-cache (ours) 
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Contrastive Learning vs Multitask Learning (ours) 
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Conclusion

• Streaming video representation learning made possible by multi-granularity task training.

• Video representation learning needs to be revolutionized!

Feel free to chat!

• Homepage: go2heart.github.io
• Email: cain.y.yan@gmail.com

Twitter/X WechatGithubWeb


