

# Learning Streaming Video Representation via Multitask Training

Yibin Yan, Jilan Xu, Shangzhe Di, Yikun Liu, Yudi Shi, Qirui Chen, Zeqian Li, Yifei Huang, **Weidi Xie**

School of Artificial Intelligence, Shanghai Jiao Tong University

Oct 2025

# Paradigm Shifting of Video Backbone

- Why Streaming Video?



Embodied AI

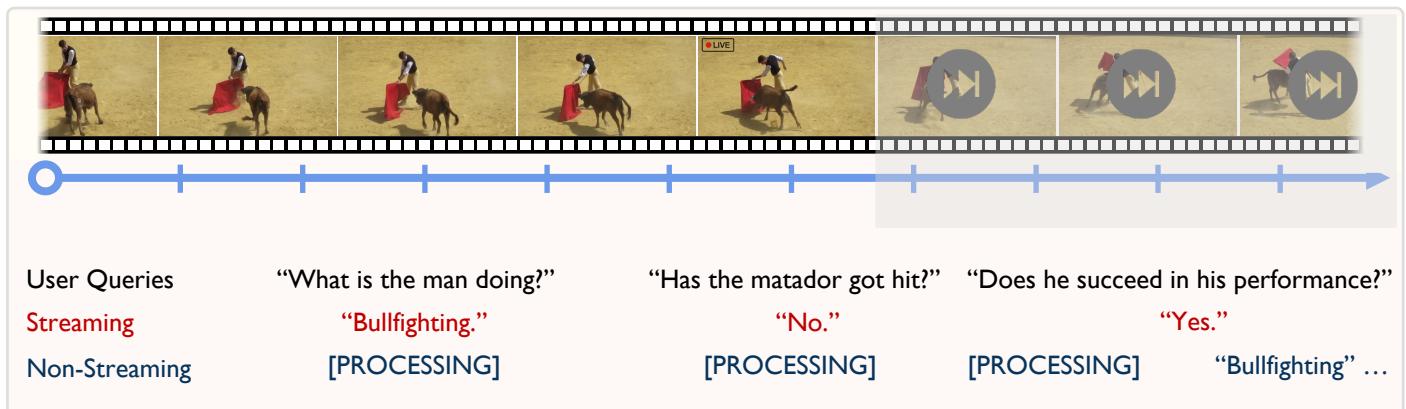


Autonomous Driving



Online Action Detection[1]

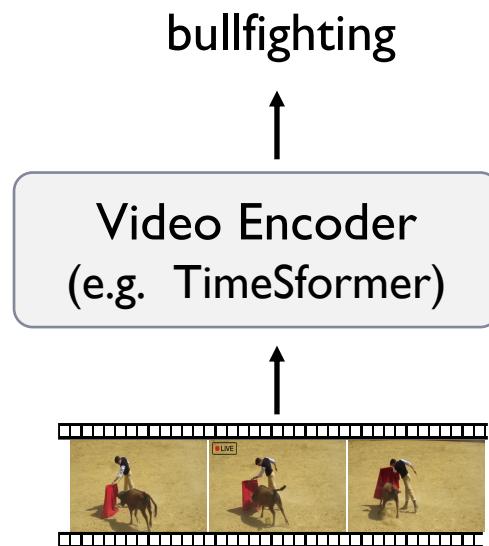
- Key Attributes
  - frame-by-frame processing
  - low-latency decision making
  - long-term context preservation



# Paradigm Shifting of Video Backbone

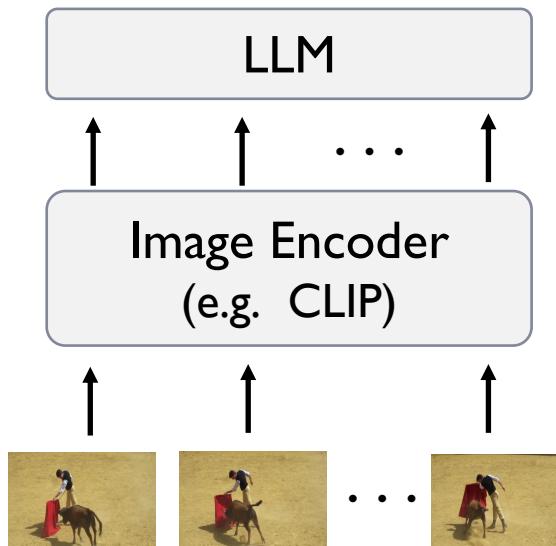
## Offline Video Backbone

- Responding after seeing the entire video
- Video-text contrastive pairs
- OOM when processing hour-long videos
- Fine-grained video representation



## VideoLLM

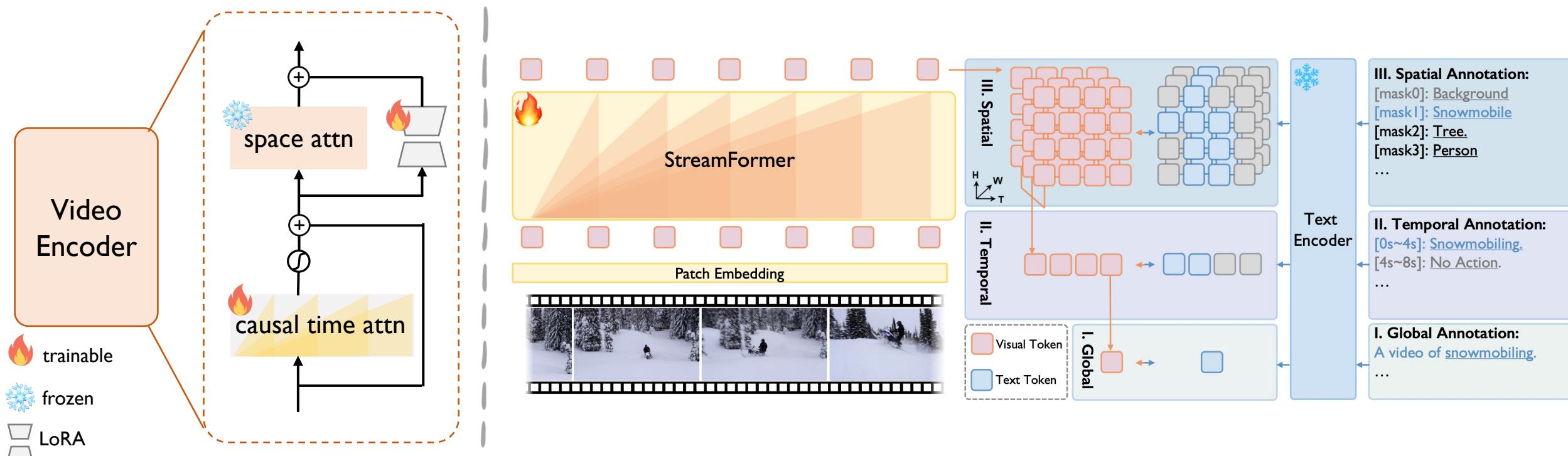
- Requires large amount of data
- Unable to offer fine-grained video representation
- Only supports text output
- Accepts streaming input



# Main Contribution

## StreamFormer

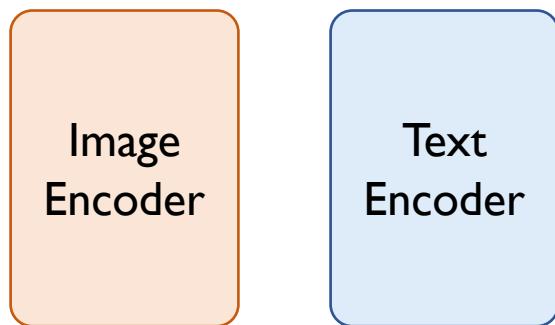
- **Architecture:** Divided space-time attention by combining (1) causal temporal attention and (2) SigLIP w/ LoRA.
- **Method:** Unifying multiple spatiotemporal video tasks into a visual-language alignment framework.
- **Data:** Instead of web-scale video-text pairs, human-annotated video datasets of various granularities.



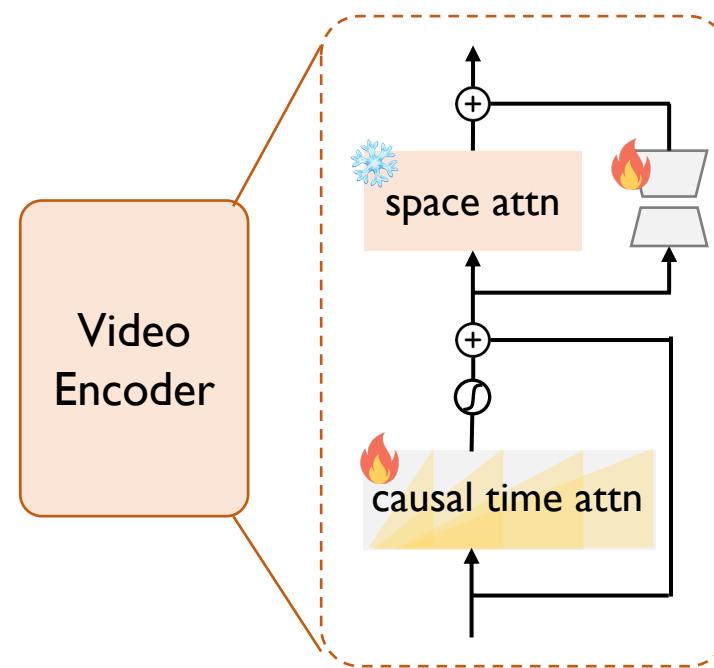
# Architecture

- Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.

i) pre-trained encoder



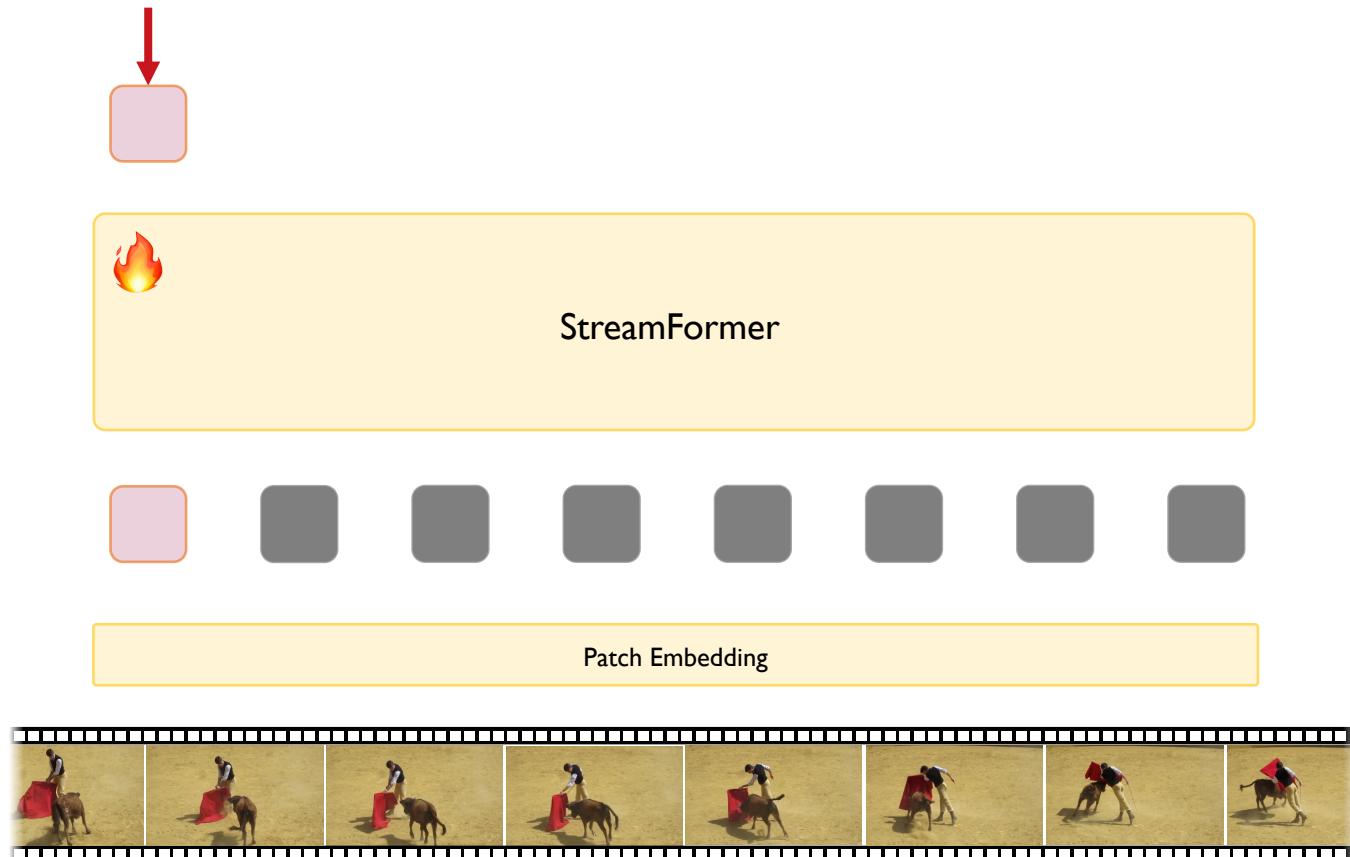
ii) streaming video backbone



- trainable
- frozen
- LoRA

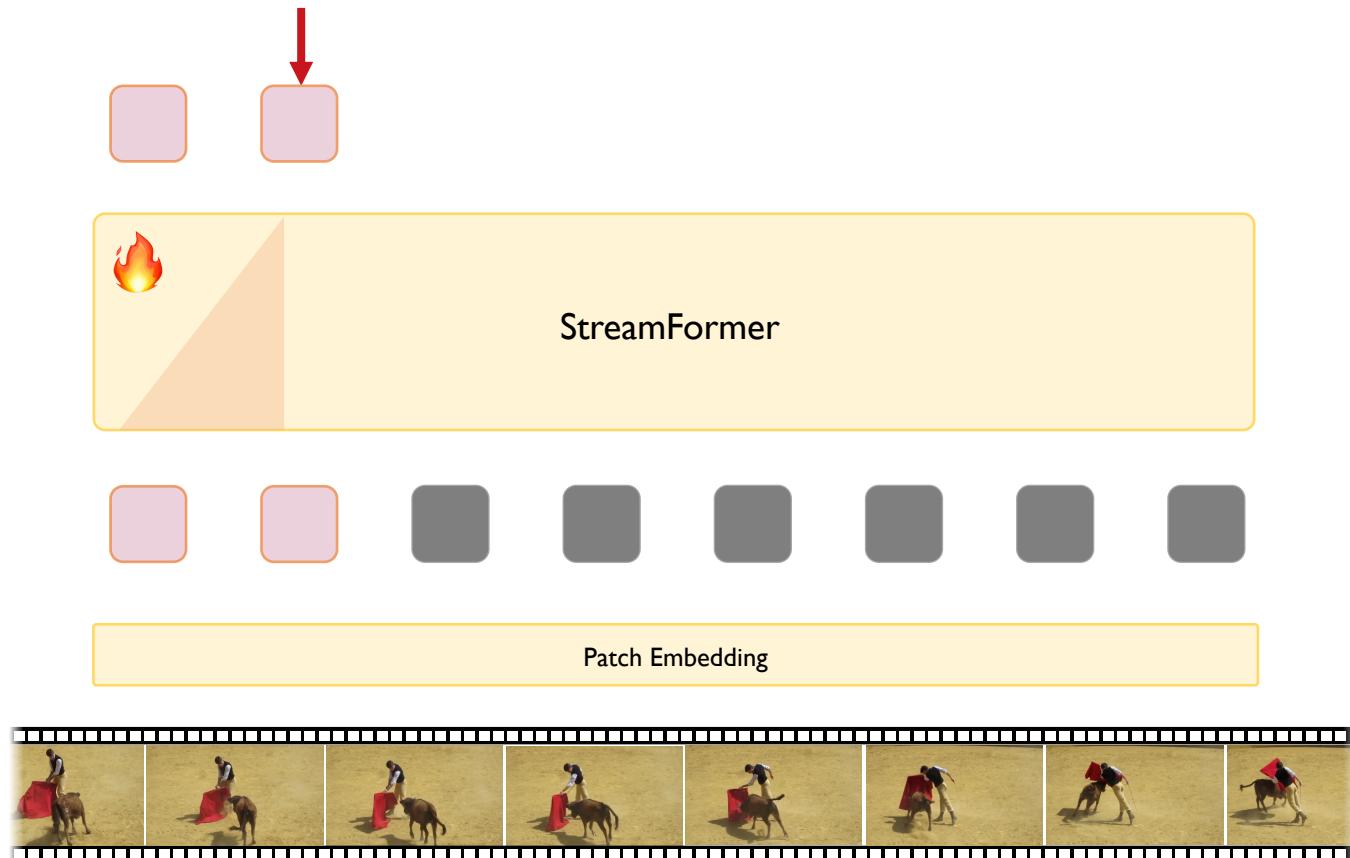
# Architecture

- Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.



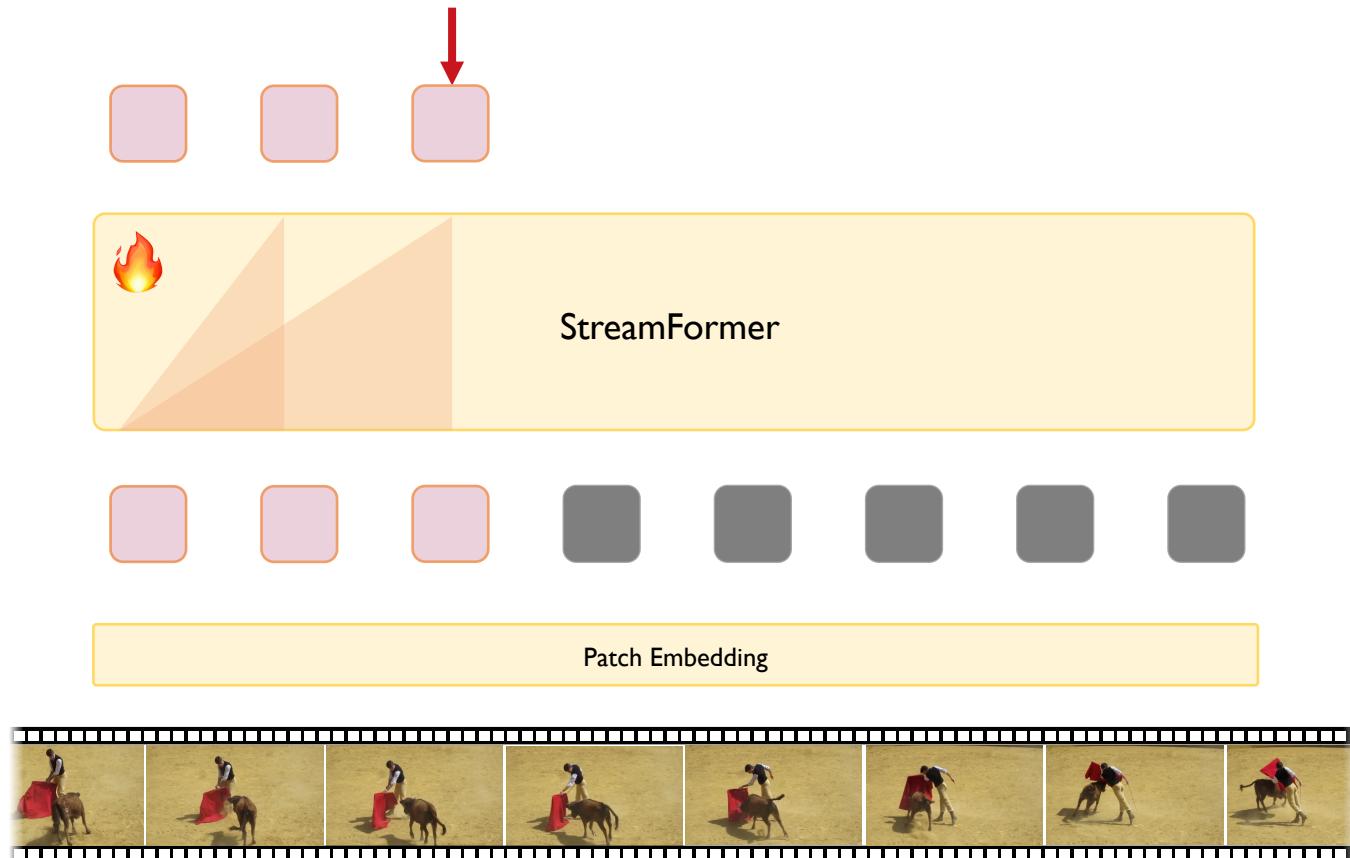
# Architecture

- Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.



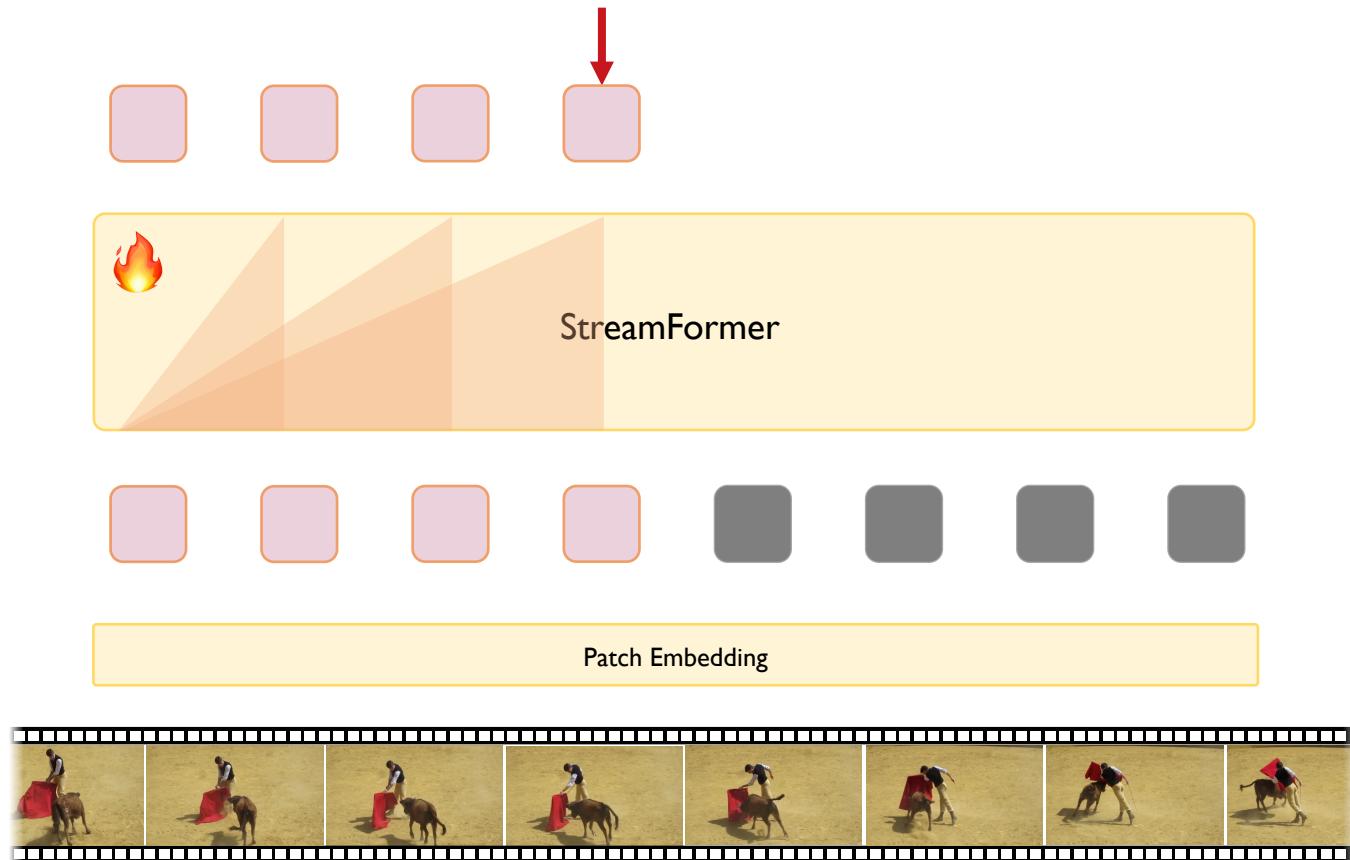
# Architecture

- Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.



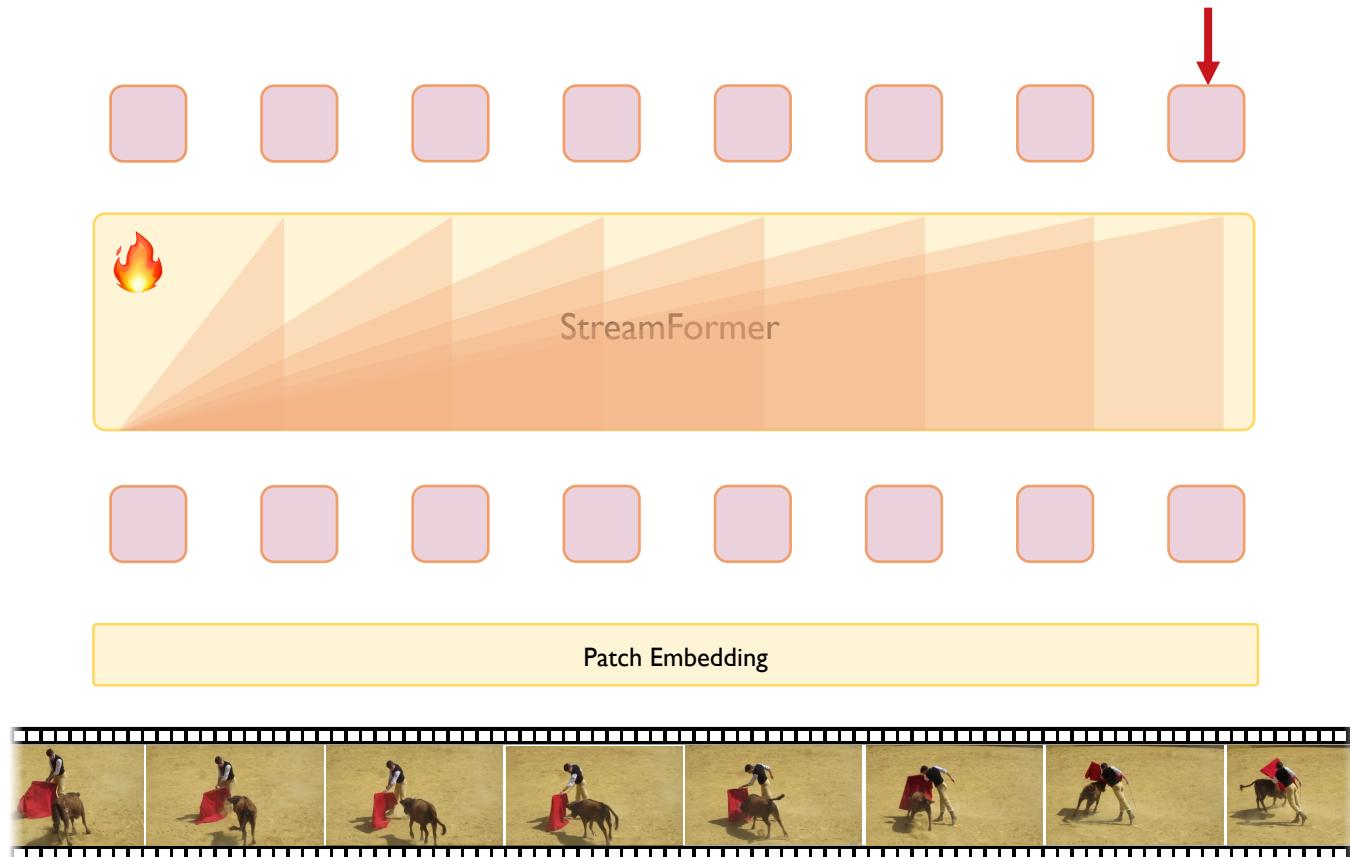
# Architecture

- Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.



# Architecture

- Lifting a pre-trained image encoder (e.g. SigLIP) to a streaming video backbone.



# Video-Language Pre-training

- Video-language alignment is more than a simple video-text pair:

Learning from  
comprehensive annotations

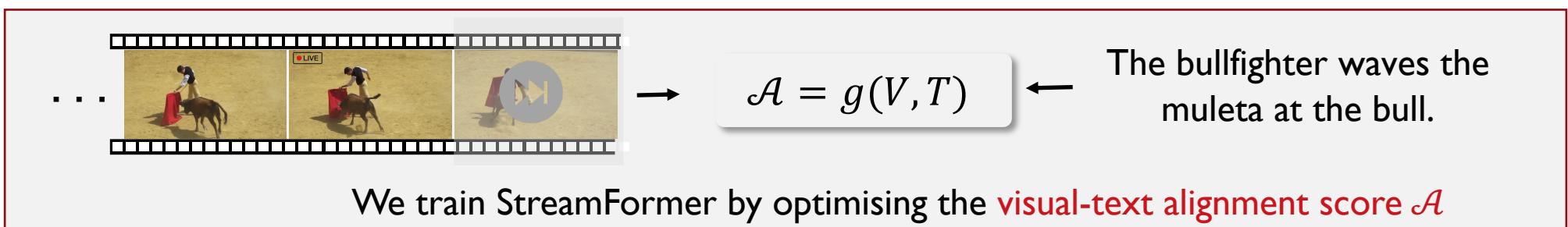


Learning from  
naïve video-text pairs



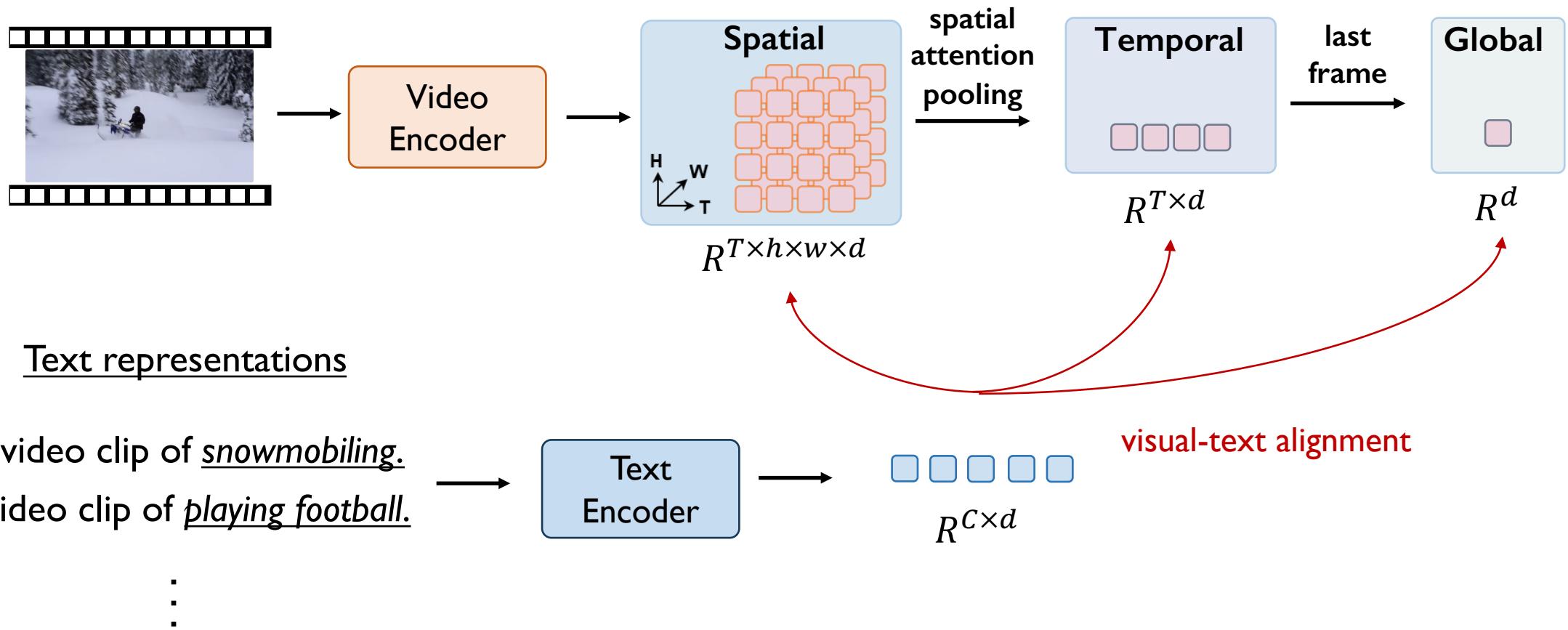
# Video-Language Pre-training

- Multitask formulation: unify various video understanding tasks in a **visual-text alignment** framework.
  - Global-level tasks
    - one label/narration **per video clip** (e.g. action recognition, video-text retrieval)
  - Temporal-level tasks
    - one label/narration **per frame** (e.g. temporal action localisation, temporal video grounding)
  - Spatial-level tasks
    - one label/narration **per pixel** (e.g. video object segmentation, referring video object segmentation)



# Video-Language Pre-training

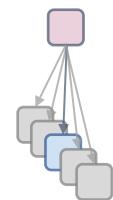
- Video representations



# Video-Language Pre-training

- Multitask formulation: unify various video understanding tasks in a **visual-text alignment** framework.

- Global-level tasks (e.g. recognition)



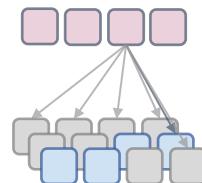
$$v_i \in R^{1 \times d}$$

$$t_i \in R^{C \times d}$$

$$\mathcal{A}_{\text{global}} = v_i t_i^T \in R^{1 \times C}$$

action label

- Temporal-level tasks (e.g. localisation)



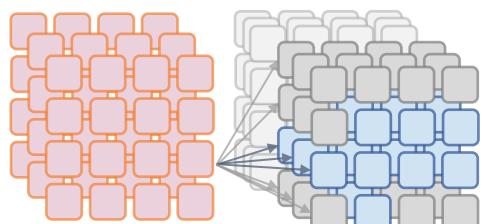
$$f_i \in R^{T \times d}$$

$$t_i \in R^{T \times C \times d}$$

$$\mathcal{A}_{\text{temporal}} = f_i t_i^T \in R^{T \times C}$$

frame label

- Spatial-level tasks (e.g. segmentation)



$$F_i \in R^{T \times h \times w \times d}$$

$$t_i \in R^{T \times h \times w \times C \times d}$$

$$\mathcal{A}_{\text{spatial}} = F_i t_i^T \in R^{T \times w \times h \times C}$$

pixel label

# Video-Language Pre-training

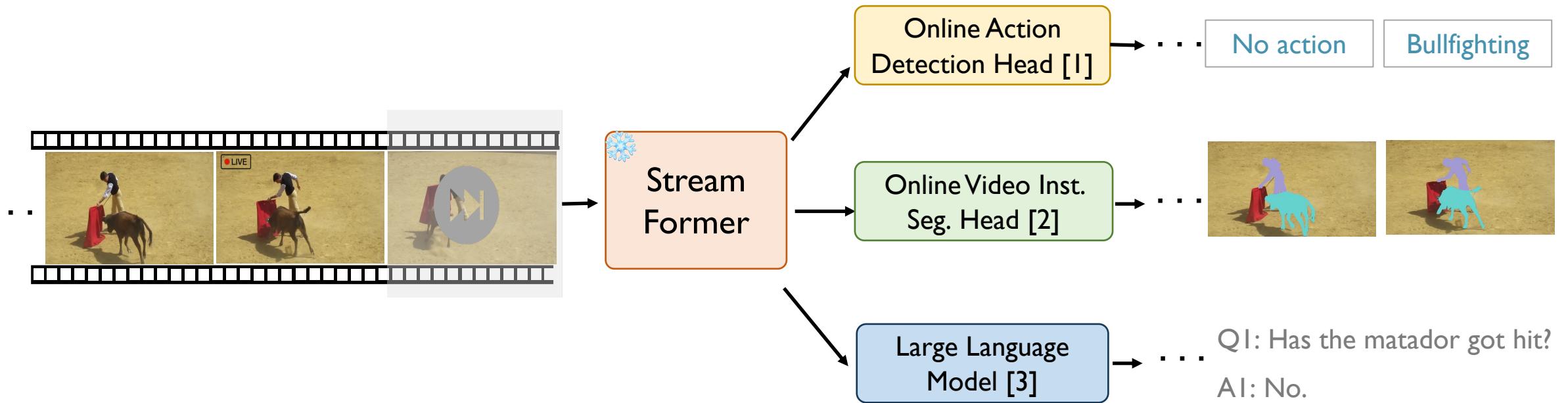
- Pre-training datasets

| Task                                       | Pre-training Dataset                                            | Scale |
|--------------------------------------------|-----------------------------------------------------------------|-------|
| <i>Global-level</i>                        |                                                                 |       |
| <b>Action Recognition</b>                  | K400, SSv2                                                      | 400K  |
| <b>Video Text Retrieval</b>                | MSRVTT, MSVD, ActivityNet, DiDeMo, LSMDC, VATEX                 | 94K   |
| <i>Temporal-level</i>                      |                                                                 |       |
| <b>Temporal Action Localisation</b>        | ActivityNet-1.3, FineAction, HACS                               | 180K  |
| <b>Temporal Video Grounding</b>            | CharadesSTA, QVHighlights, TaCoS, ANet-Captions, DiDeMo, QuerYD | 120K  |
| <i>Spatial-level</i>                       |                                                                 |       |
| <b>Video Instance Segmentation</b>         | YouTubeVIS-19, LVVIS, COCO                                      | 120K  |
| <b>Referring Video Object Segmentation</b> | MEVIS, Refer-YouTube-VOS                                        | 36K   |
| Total                                      | -                                                               | ~1M   |

† We sample data from the same task at each mini-batch, and use gradient accumulation to perform backpropagation and parameter update collectively after iterating through all tasks.

# Downstream Application

- Freeze the pre-trained video backbone and append task-specific head



[1] Jiahao Wang, et al. "Memory-and-anticipation transformer for online action understanding." *ICCV 2023*.

[2] Kaining Ying, et al. "Ctviz: Consistent training for online video instance segmentation." *ICCV 2023*.

[3] Haotian Liu, et al. "Visual instruction tuning." *NeurIPS 2023*.

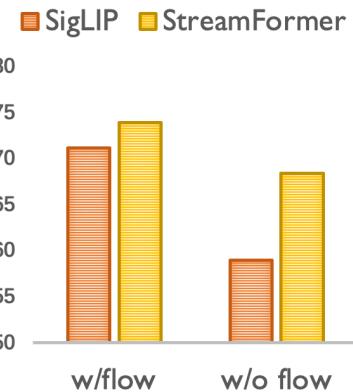
# Downstream Application

## Experimental Setting

- Keep all settings the same except for visual encoder (StreamFormer vs. SigLIP)
- Add specific task heads for each downstream
  - OAD: training MAT[1] with extracted video features.
  - OVIS: ViT-Adapter with CTVIS[2] training.
  - VideoQA: LLaVA-Next[3] pipeline added with video samples.

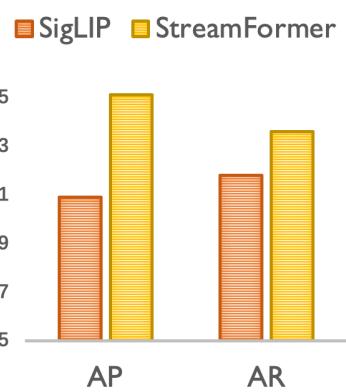
i) Online Action Detection

THUMOS (mAP)



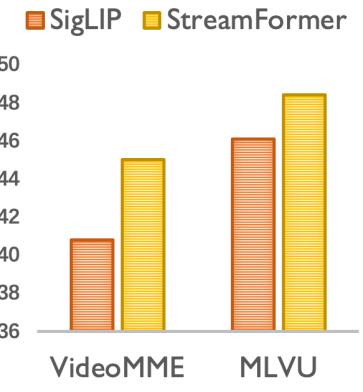
ii) Online Video Instance Segmentation

YouTube-VIS-19 (AP, AR)



iii) Video Question Answering

VideoMME, MLVU (Acc)



[1] Jiahao Wang, et al. "Memory-and-anticipation transformer for online action understanding." *ICCV 2023*.

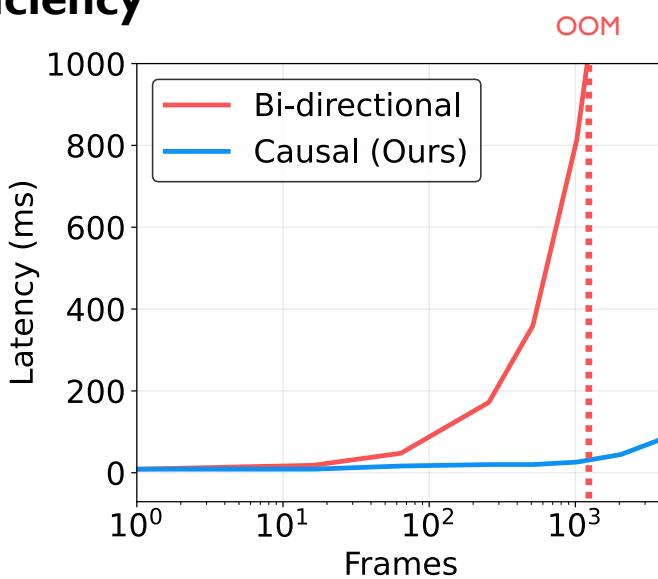
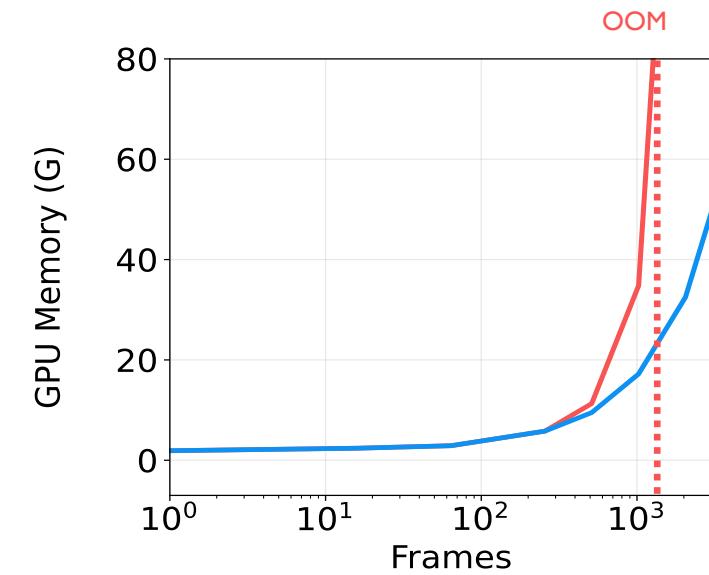
[2] Kaining Ying, et al. "Ctviz: Consistent training for online video instance segmentation." *ICCV 2023*.

[3] Haotian Liu, et al. "Visual instruction tuning." *NeurIPS 2023*.

# Downstream Application

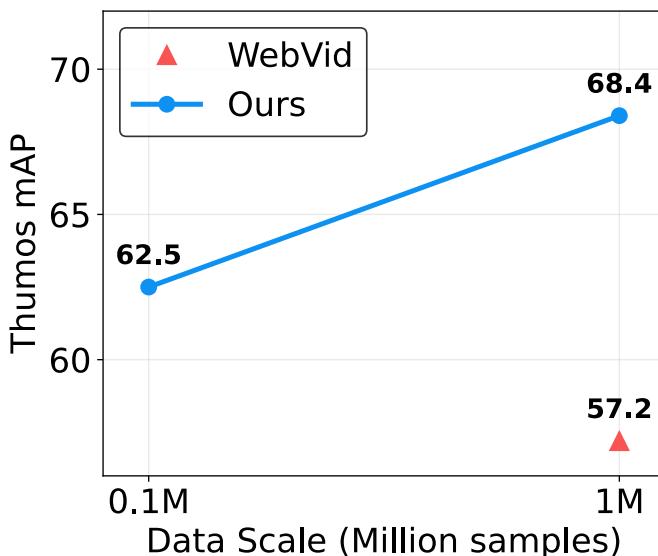
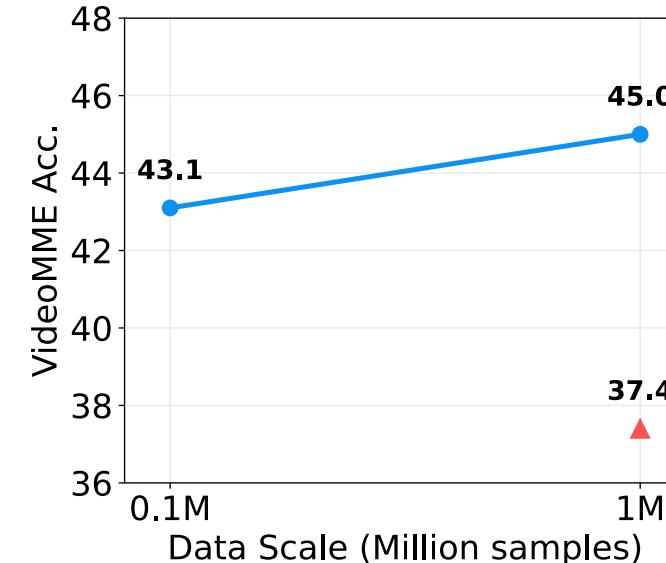
- **Inference Efficiency**

Bi-directional vs Causal time attention w/ kv-cache (ours)



- **Data Efficiency**

Contrastive Learning vs Multitask Learning (ours)

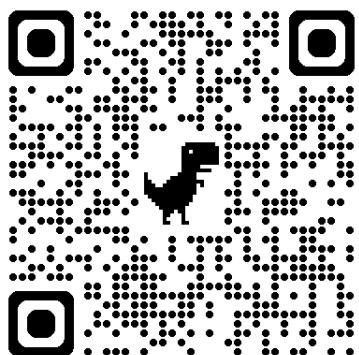


# Conclusion

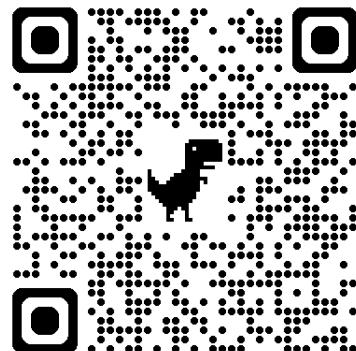
- Streaming video representation learning made possible by multi-granularity task training.
- Video representation learning needs to be revolutionized!

Feel free to chat!

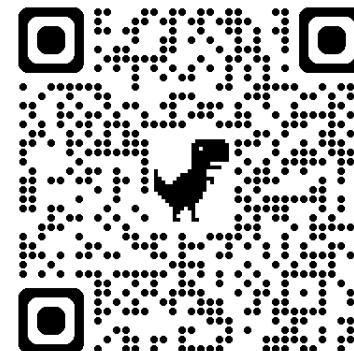
- Homepage: [go2heart.github.io](http://go2heart.github.io)
- Email: [cain.y.yan@gmail.com](mailto:cain.y.yan@gmail.com)



Web



Github



Twitter/X



Wechat