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Introduction

How to extend the supervised methods to the weakly supervised methods for efficient and

accurate classification of WSIs ?
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CLAM (Lu et al Nat. Biomed. Eng’2021 )



Multiple instance learning (MIL) techniques aggregate disease-relevant information from label-

free instances for bag label Prediction.
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3) Prediction2) Feature Representation1) Instance Sampling

RNNMIL (Campanella et al Nature Medicite’2019 ) 
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DAMIL (Hashimoto et al CVPR’2020 )
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Prior work leverages instance correlations to build global representations for bag prediction.

Transformer-based TransMIL (NIPS’2021)Attention-based CLAM (Nat. Biomed. Eng’2021)

Transformer-based MILBooster (ICCV’2023) Transformer-based PAMIL (CVPR’2024)
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Introduction

Attention- and Transformer-based 

MIL are limited by uninformative 

instances and heavy computation, 

leading to suboptimal representations 

and prolonged inference.

Comparative results of FLOPs, testing time, and accuracy with 

representative MIL methods. The size of each represents the FLOPs.
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⚫ Redundant Local Modeling: Mamba processes all instances uniformly, causing overhead

from redundant features and loss of critical diagnostic cues.

⚫ Sparse Global Representation: Tumor regions are spatially dispersed and sparse, and existing

methods fail to model inter-group correlations, leading to weak global representations.

Limitations: 

Tumor

Tumor Normal
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Group Masking Mamba (GMMamba): Reduce redundant interference and enhance inter-bag 

interactions to improve representation quality and prediction performance.
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Cross-group Super-feature Sampling (CSS) Module：capture dispersed tumor information across 

groups for comprehensive and discriminative representations
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Experiments

Evaluation methods:

We compare our proposed GMMamba against representative MIL methods, including：

⚫ Attention-based: ABMIL (Ilse, ICML’1 ), CLAM (Lu, Nat. Biomed. Eng’21) , DSMIL (Li, 

CVPR’21 ),      (Zhang, CVPR’22), MHIM-ABMIL ( ang, ICCV’23), IBMIL-ABMIL

(Zhang, Lin’23), ILRA-MIL (Xiang, ICIL’23), ACMIL (Zhang, ECCV’2 );

⚫ Transformer-based: TransMIL (Shao, CVPR’21), MHIM-TransMIL ( ang, ICCV’23) ;

⚫ Mamba-based: SSMMIL (Leo, MICCAI’23), MambaMIL (Yang, MICCAI’24) .

Evaluation metrics:

⚫ Aunder the receiver operating characteristic curve (AUC), accuracy, and F1 score (F1) 

⚫ 5-fold Training-validation-Testing
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TCGA-BRCA(Breast Cancer)

⚫ 952 WSIs (749 IDC, 203 ILC), split 

65/10/25.

⚫ ~3.1M patches at 10× magnification.

TCGA-ESCA(Esophageal Cancer)

⚫ 156 WSIs (90 SCC, 66 ADC), split 3/1/1.

⚫ ~0.5M patches at 20× magnification.

BRACS(Breast Carcinoma Subtyping)

⚫ 547 WSIs (265 benign, 89 atypical, 193 

malignant).

⚫ ~1.4M patches at 10× magnification.

TCGA-Lung(Lung Cancer)

⚫ 1053 WSIs (541 LUAD, 512 LUSC), split 

65/10/25.

⚫ ~4.1M patches at 20× magnification.
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GMMamba consistently outperforms baseline methods across multiple WSI datasets by effectively 

reducing redundancy and enhancing inter-group interactions.



Ablation Studies-Validation on Basic Components
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GMMamba improve bag-level representations by aggregating dispersed tumor information 

and mitigating redundancy, boosting accuracy, F1, and AUC.

Location-based Grouping (LG) BiMamba with Max-Pooling (BMP)

Cross-group Super-feature Sampling (CSS) Intra-group Masking Mamba (IMM) 



Experiments-Compare with SOTA Methods
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CSS enhances bag-level 

methods by effectively 

exploring instance 

relationships and 

aggregating dispersed tumor 

features.



Ablation Studies-CSS Variants
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CSS consistently outperforms its variants, 

with the association matrix Q effectively 

bridging local and global interactions for 

improved group representations.

CCA

CMax

CMHA

Q



Ablation Studies-Hyperparameter Analysis
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GMMamba clusters instances with similar 

tissues and structures into groups, 

reducing redundancy and producing more 

precise bag representations.

G:  grouping number  𝑴𝒓: masking ratio 
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Key Innovations:

⚫ Intra-group masking Mamba (IMM): removes local redundancy, yields compact 

group representations.

⚫ Cross-group super-feature sampling (CSS): aggregates dispersed tumor features, 

enhances global representation.

Future Work: 

Adaptive masking strategies and advanced instance selection.
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