

哈爾濱工業大學
HARBIN INSTITUTE OF TECHNOLOGY

ICCV
OCT 19-23, 2025

HONOLULU
HAWAII

<https://vilab.hit.edu.cn/>

GMMamba: Group Masking Mamba for Whole Slide Image Classification

Tingting Zheng¹ Hongxun Yao^{1,*} Kui Jiang¹ Yi Xiao² Sicheng Zhao³

¹Harbin Institute of Technology

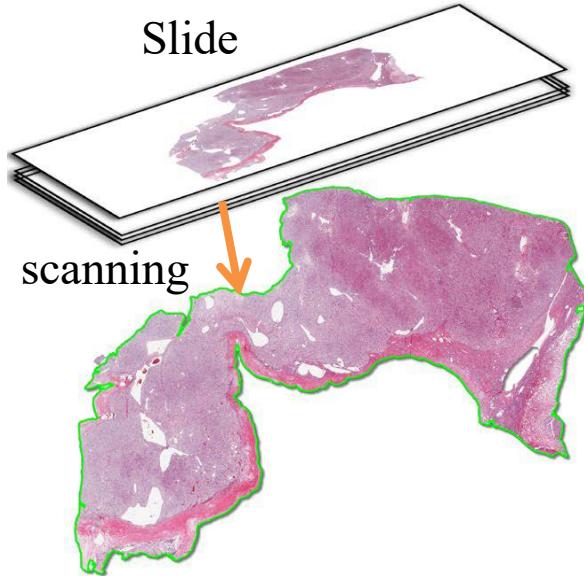
²Wuhan University ³Tsinghua University

ICCV 2025 (*Oral Presentation*)

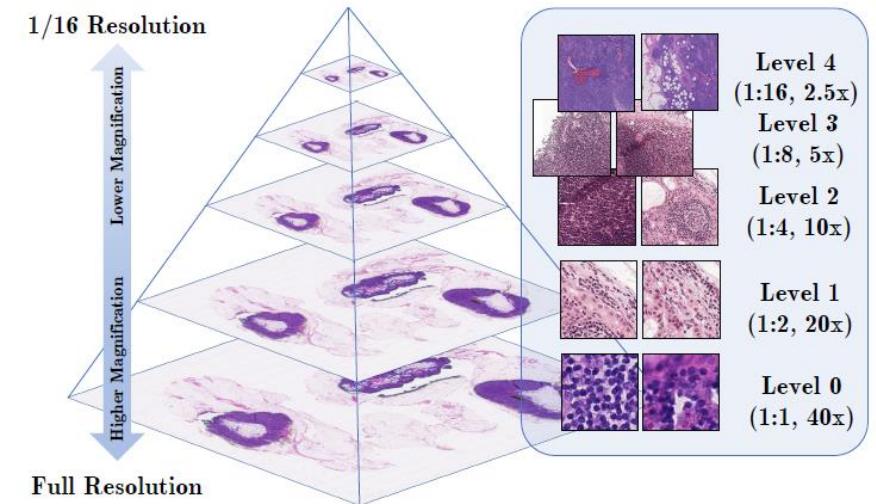
<https://github.com/titizheng/GMMamba>


1 | **Introduction**

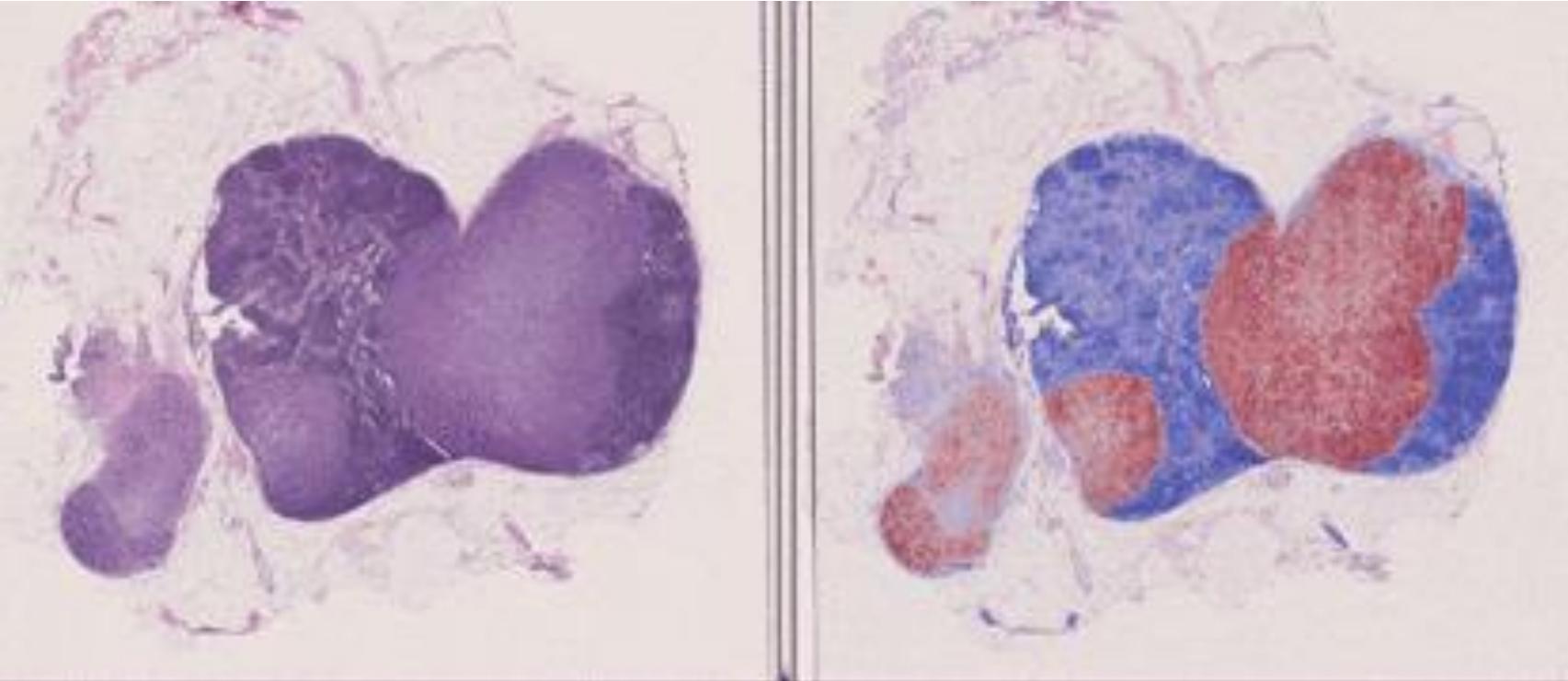
2 | **Method**


3 | **Experiments**

4 | **Conclusion**

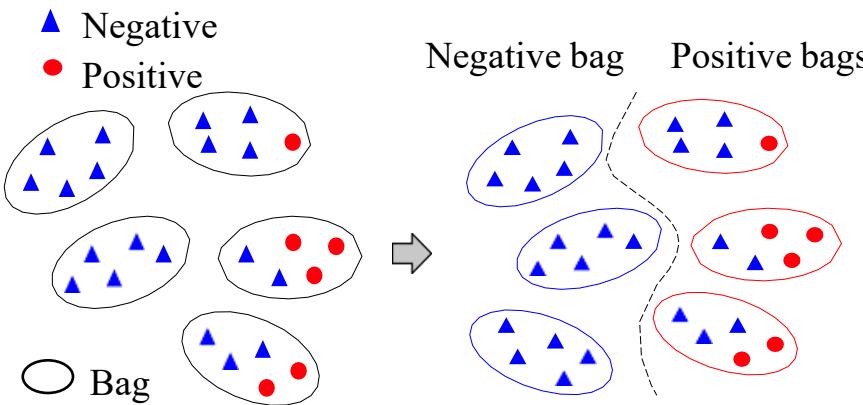

Introduction

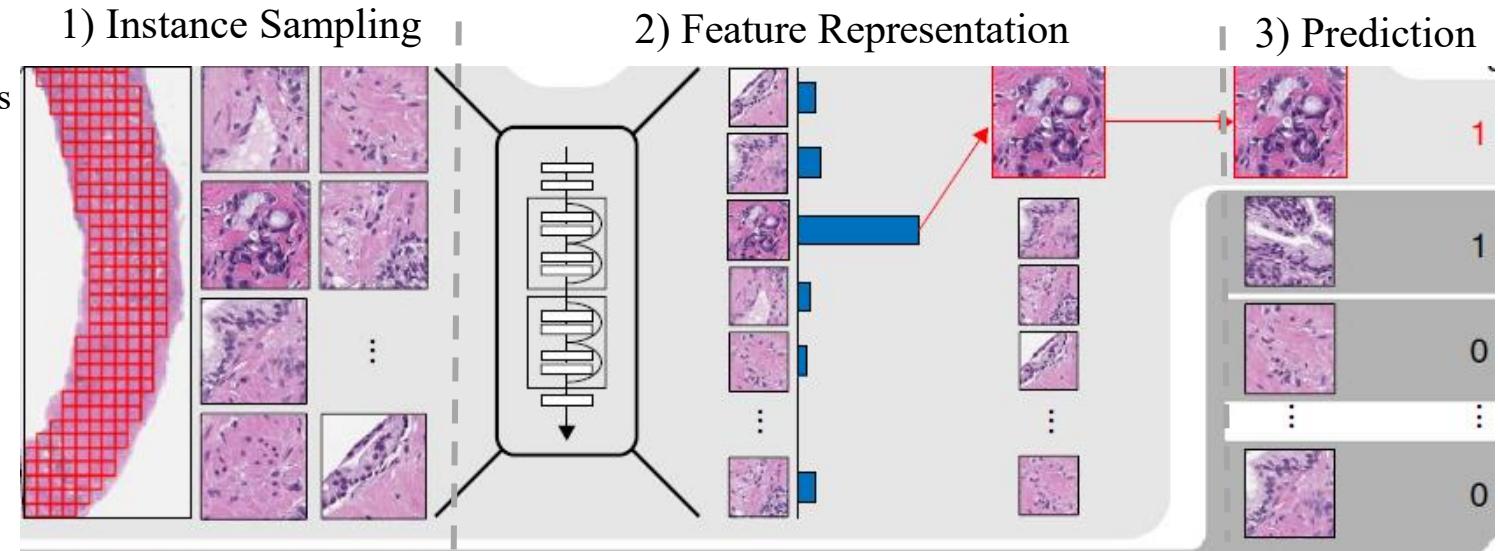
Histopathology images



Whole Slide Image (WSI)

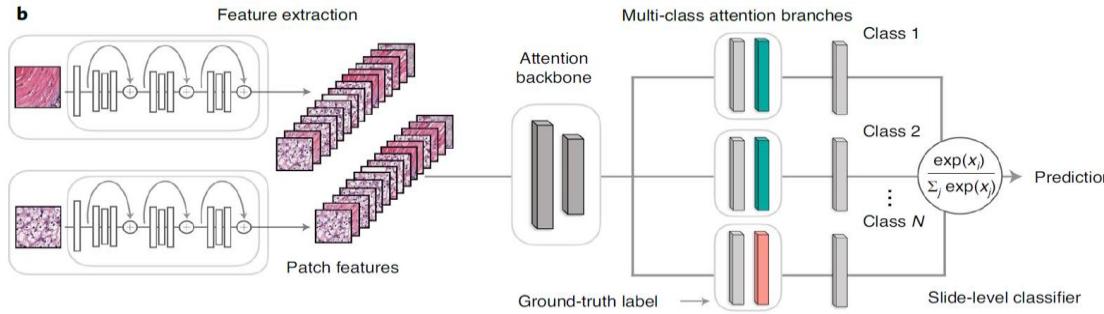
Multi-level high-resolution images

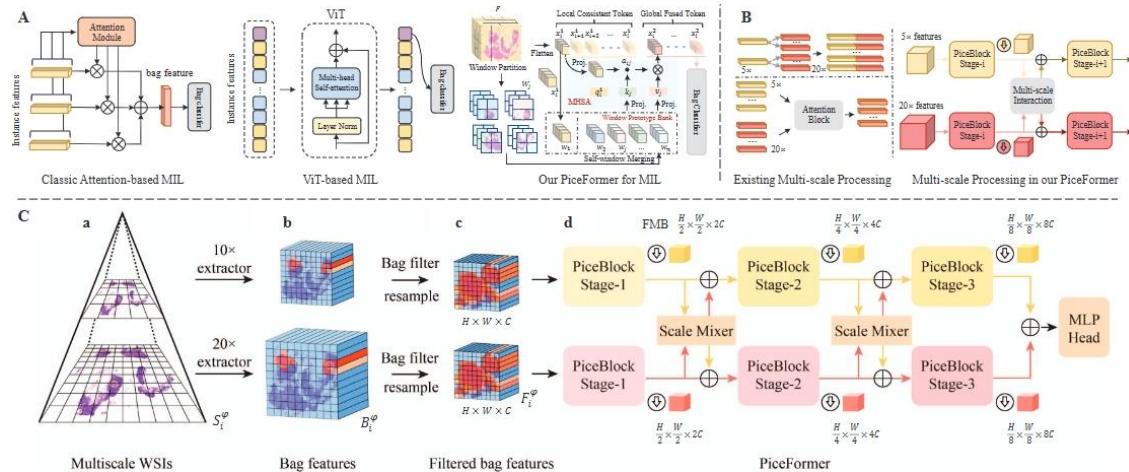

Introduction


CLAM (Lu et al Nat. Biomed. Eng'2021)

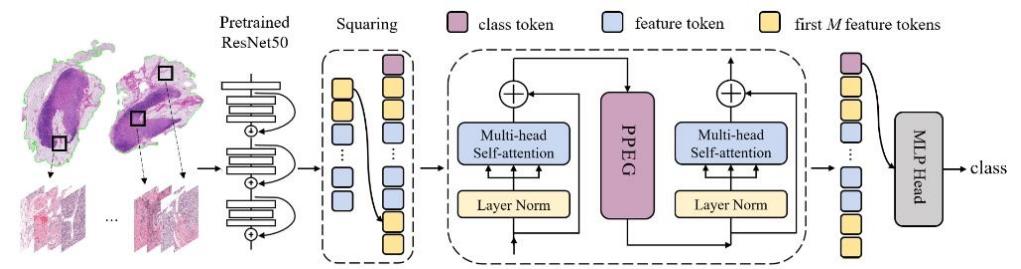
How to extend the supervised methods to the weakly supervised methods for efficient and accurate classification of WSIs ?

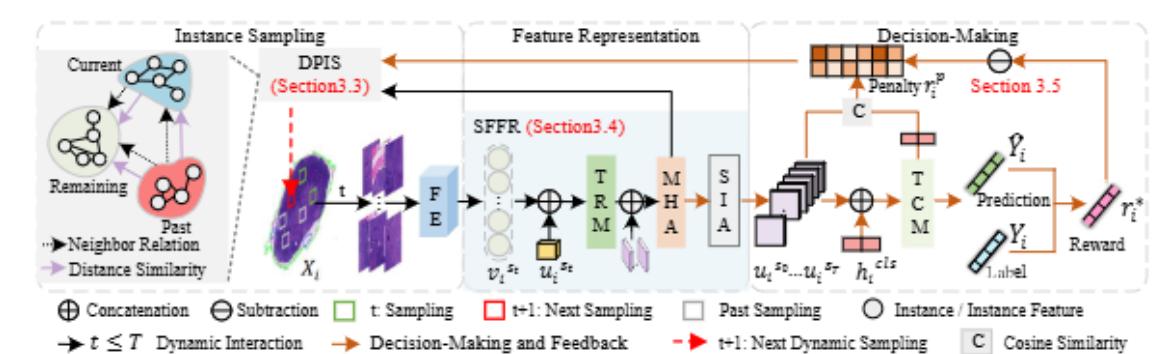
Introduction


DAMIL (Hashimoto et al CVPR'2020)

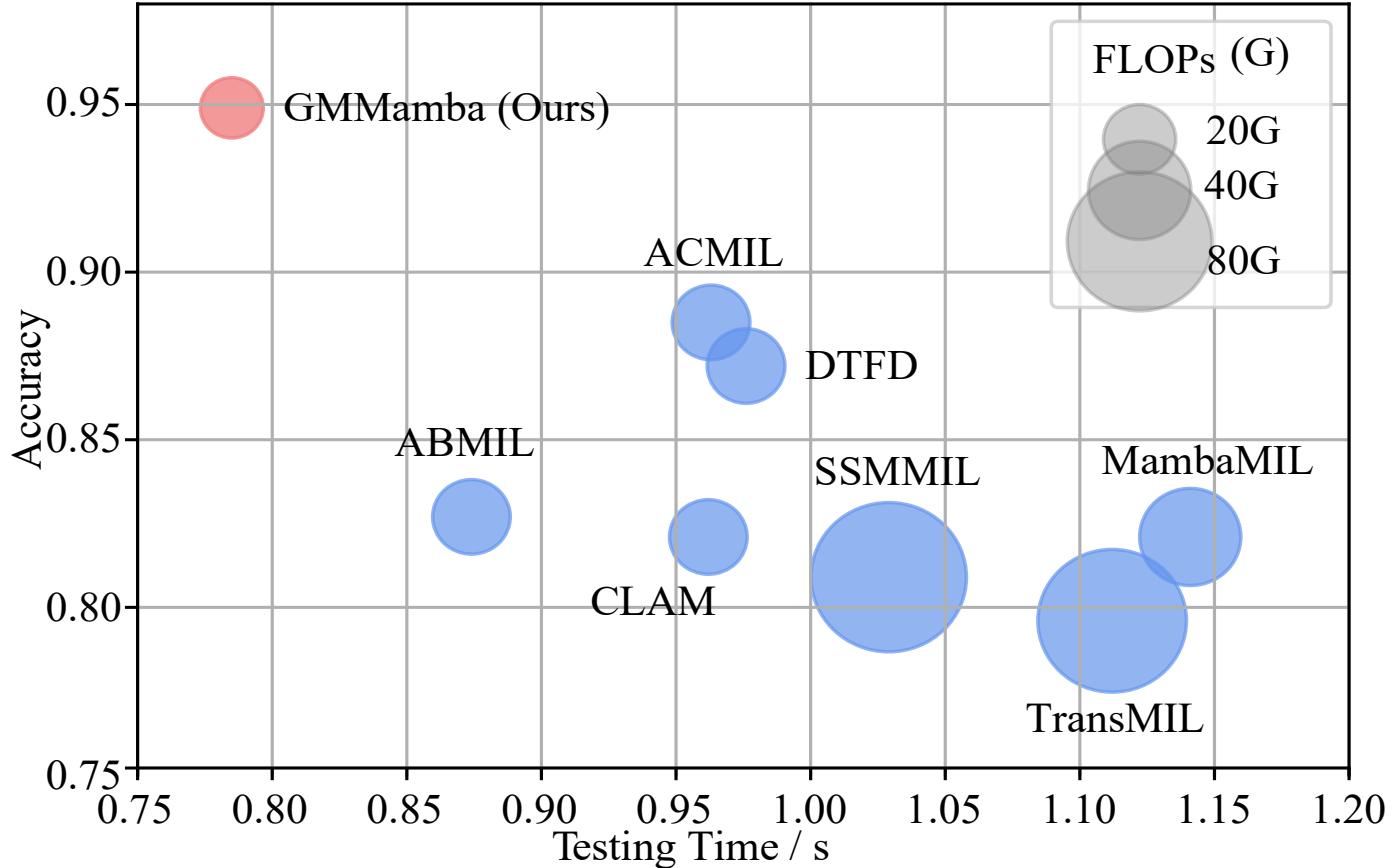

RNNMIL (Campanella et al Nature Medicite'2019)

Multiple instance learning (MIL) techniques aggregate disease-relevant information from label-free instances for bag label Prediction.


Introduction

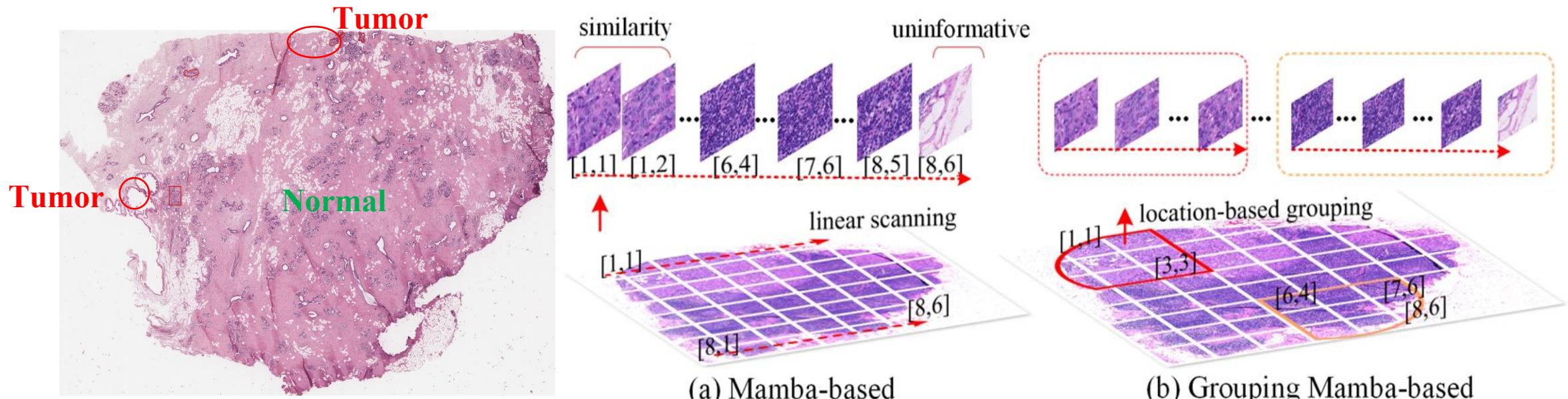

Attention-based CLAM (Nat. Biomed. Eng'2021)

Transformer-based MILBooster (ICCV'2023)


Transformer-based TransMIL (NIPS'2021)

Transformer-based PAMIL (CVPR'2024)

Prior work leverages instance correlations to build global representations for bag prediction.


Introduction

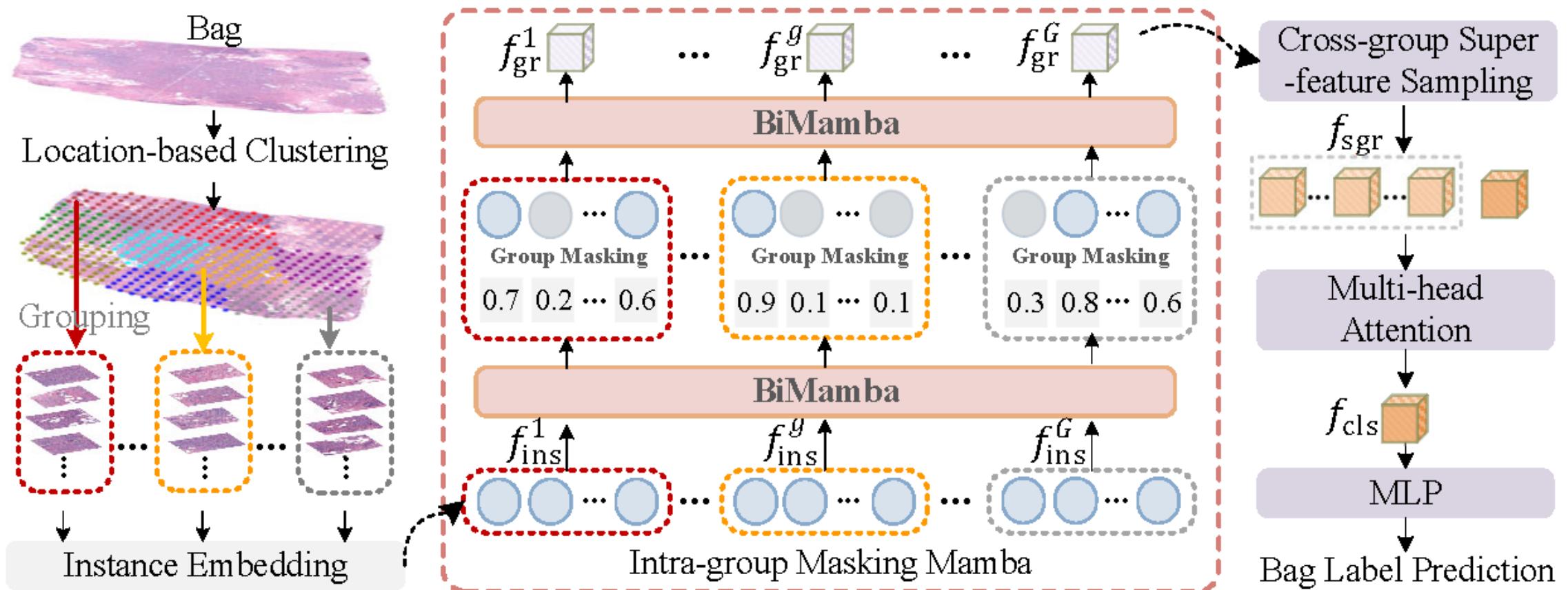
Comparative results of FLOPs, testing time, and accuracy with representative MIL methods. The size of each represents the FLOPs.

Attention- and Transformer-based MIL are limited by uninformative instances and heavy computation, leading to suboptimal representations and prolonged inference.

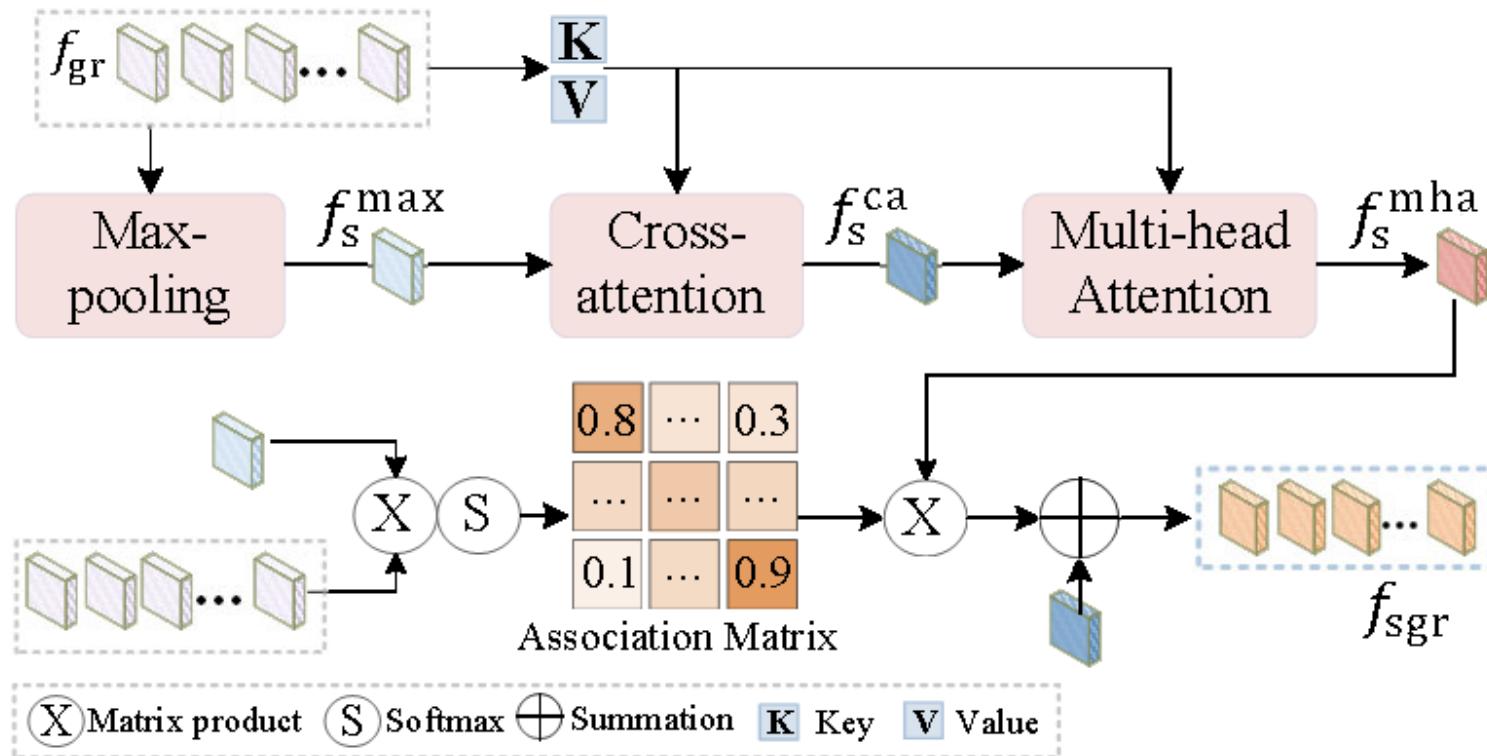
Introduction

Limitations:

- **Redundant Local Modeling:** Mamba processes all instances uniformly, causing overhead from redundant features and loss of critical diagnostic cues.
- **Sparse Global Representation:** Tumor regions are spatially dispersed and sparse, and existing methods fail to model inter-group correlations, leading to weak global representations.


1 | Introduction

2 | Method


3 | Experiments

4 | Conclusion

Group Masking Mamba (GMMamba): Reduce redundant interference and enhance inter-bag interactions to improve representation quality and prediction performance.

Cross-group Super-feature Sampling (CSS) Module: capture dispersed tumor information across groups for comprehensive and discriminative representations

1 | Introduction

2 | Method

3 | Experiments

4 | Conclusion

Evaluation methods:

We compare our proposed GMMamba against representative MIL methods, including:

- **Attention-based:** ABMIL (Ilse, ICML'18), CLAM (Lu, Nat. Biomed. Eng'21), DSMIL (Li, CVPR'21), DTFD (Zhang, CVPR'22), MHIM-ABMIL (Tang, ICCV'23), IBMIL-ABMIL (Zhang, Lin'23), ILRA-MIL (Xiang, ICIL'23), ACMIL (Zhang, ECCV'25);
- **Transformer-based:** TransMIL (Shao, CVPR'21), MHIM-TransMIL (Tang, ICCV'23) ;
- **Mamba-based:** SSMMIL (Leo, MICCAI'23), MambaMIL (Yang, MICCAI'24) .

Evaluation metrics:

- Under the receiver operating characteristic curve (AUC), accuracy, and F1 score (F1)
- 5-fold Training-validation-Testing

TCGA-BRCA(Breast Cancer)

- 952 WSIs (749 IDC, 203 ILC), split 65/10/25.
- ~3.1M patches at 10× magnification.

TCGA-ESCA(Esophageal Cancer)

- 156 WSIs (90 SCC, 66 ADC), split 3/1/1.
- ~0.5M patches at 20× magnification.

BRACS(Breast Carcinoma Subtyping)

- 547 WSIs (265 benign, 89 atypical, 193 malignant).
- ~1.4M patches at 10× magnification.

TCGA-Lung(Lung Cancer)

- 1053 WSIs (541 LUAD, 512 LUSC), split 65/10/25.
- ~4.1M patches at 20× magnification.

Experiments-Compare with SOTA Methods

GMMamba consistently outperforms baseline methods across multiple WSI datasets by effectively reducing redundancy and enhancing inter-group interactions.

Methods	BRACS				TCGA-Lung		Methods	TCGA-BRCA			TCGA-ESCA		
	Resnet18-ImageNet		ViT-S/16-SSL		Resnet18-ImageNet			Accuracy	AUC	F1	Accuracy	AUC	F1
	Accuracy	F1	Accuracy	F1	Accuracy	F1	ABMIL	0.862±0.025	0.882±0.038	0.915±0.015	0.827±0.092	0.914±0.066	0.859±0.079
ABMIL	0.691±0.041	0.604±0.055	0.791±0.048	0.715±0.082	0.844±0.023	0.849±0.021	DSMIL	0.823±0.021	0.820±0.033	0.892±0.014	0.808±0.065	0.882±0.084	0.833±0.062
DSMIL	0.657±0.026	0.555±0.016	0.736±0.044	0.644±0.051	0.783±0.041	0.789±0.033	CLAM-MB	0.865±0.020	0.890±0.029	0.917±0.014	0.821±0.078	0.902±0.088	0.843±0.075
CLAM-MB	0.689±0.036	0.601±0.024	0.747±0.038	0.684±0.045	0.844±0.023	0.849±0.021	CLAM-SB	0.858±0.011	0.877±0.029	0.914±0.006	0.834±0.061	0.927±0.064	0.861±0.049
CLAM-SB	0.739±0.052	0.668±0.060	0.760±0.057	0.700±0.050	0.834±0.030	0.838±0.029	TransMIL	0.847±0.021	0.846±0.036	0.905±0.013	0.796±0.101	0.895±0.083	0.831±0.083
TransMIL	0.706±0.044	0.596±0.036	0.767±0.029	0.671±0.042	0.819±0.038	0.823±0.032	DTFD-MaxMin	0.816±0.023	0.810±0.033	0.885±0.013	0.834±0.110	0.881±0.145	0.875±0.074
DTFD-MaxMin	0.698±0.030	0.610±0.044	0.760±0.046	0.687±0.057	0.832±0.031	0.833±0.034	DTFD-AFS	0.823±0.028	0.824±0.034	0.892±0.017	0.872±0.054	0.911±0.046	0.890±0.050
DTFD-AFS	0.676±0.056	0.614±0.054	0.776±0.038	0.707±0.049	0.852±0.020	0.855±0.021	DTFD-MaxS	0.828±0.038	0.826±0.049	0.891±0.026	0.777±0.116	0.820±0.092	0.827±0.081
DTFD-MaxS	0.708±0.052	0.614±0.094	0.756±0.032	0.678±0.034	0.764±0.010	0.762±0.019	MHIM-ABMIL	0.858±0.004	0.883±0.020	0.912±0.001	0.859±0.082	0.940±0.046	0.889±0.058
MHIM-ABMIL	0.715±0.035	0.624±0.039	0.754±0.033	0.650±0.031	0.867±0.031	0.872±0.027	MHIM-TransMIL	0.848±0.022	0.872±0.013	0.905±0.012	0.853±0.054	0.911±0.040	0.879±0.044
MHIM-TransMIL	0.689±0.026	0.613±0.016	0.752±0.025	0.670±0.047	0.832±0.035	0.831±0.044	ILRA-MIL	0.857±0.035	0.886±0.026	0.908±0.027	0.841±0.098	0.901±0.091	0.857±0.089
IBMIL-ABMIL	0.702±0.040	0.607±0.045	0.773±0.040	0.688±0.057	0.816±0.027	0.821±0.025	IBMIL-ABMIL	0.859±0.018	0.897±0.028	0.913±0.012	0.859±0.115	0.915±0.086	0.878±0.103
ILRA-MIL	0.732±0.076	0.650±0.094	0.773±0.050	0.702±0.070	0.823±0.035	0.828±0.041	SSMMIL	0.863±0.006	0.896±0.032	0.916±0.005	0.809±0.092	0.910±0.069	0.838±0.078
SSMMIL	0.721±0.037	0.620±0.048	0.760±0.056	0.676±0.062	0.843±0.033	0.847±0.034	MambaMIL	0.868±0.017	0.878±0.032	0.917±0.009	0.821±0.098	0.908±0.074	0.838±0.092
MambaMIL	0.706±0.066	0.636±0.071	0.748±0.042	0.646±0.064	0.856±0.027	0.864±0.022	ACMIL	0.869±0.017	0.900±0.019	0.920±0.009	0.885±0.078	0.948±0.042	0.901±0.067
ACMIL	0.698±0.041	0.633±0.044	0.773±0.023	0.692±0.035	0.844±0.023	0.849±0.021	GMMamba (Ours)	0.891±0.013	0.906±0.016	0.932±0.008	0.949±0.029	0.970±0.033	0.955±0.025
GMMamba (Ours)	0.778±0.025	0.699±0.037	0.819±0.022	0.747±0.049	0.877±0.020	0.880±0.018	GMMamba (Ours)	0.891±0.013	0.906±0.016	0.932±0.008	0.949±0.029	0.970±0.033	0.955±0.025

Ablation Studies-Validation on Basic Components

GMMamba improve bag-level representations by aggregating dispersed tumor information and mitigating redundancy, boosting accuracy, F1, and AUC.

Model	LG	IMM	CSS	Accuracy	AUC	F1
w BMP	✗	✗	✗	0.833±0.056	0.903±0.053	0.862±0.046
w LG-BMP	✓	✗	✗	0.885±0.057	0.925±0.057	0.899±0.048
w/o Masking	✓	✗	✗	0.898±0.051	0.930±0.047	0.907±0.051
w IMM	✓	✓	✗	0.924±0.055	0.939±0.052	0.930±0.055
w CSS	✓	✗	✓	0.936±0.028	0.965±0.032	0.945±0.025
GMMamba	✓	✓	✓	0.949±0.029	0.970±0.033	0.955±0.025

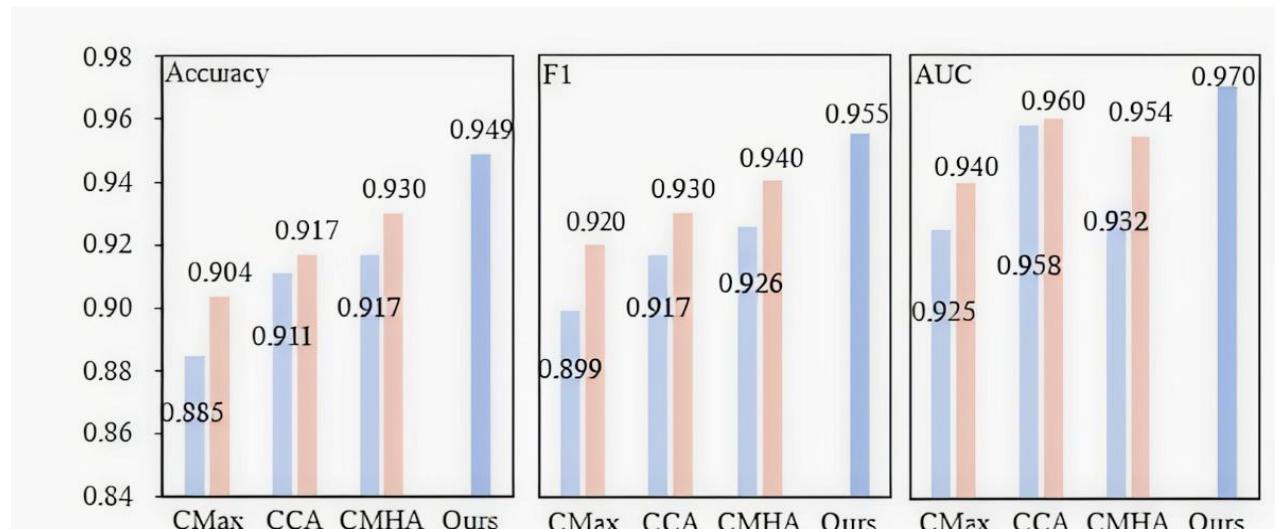
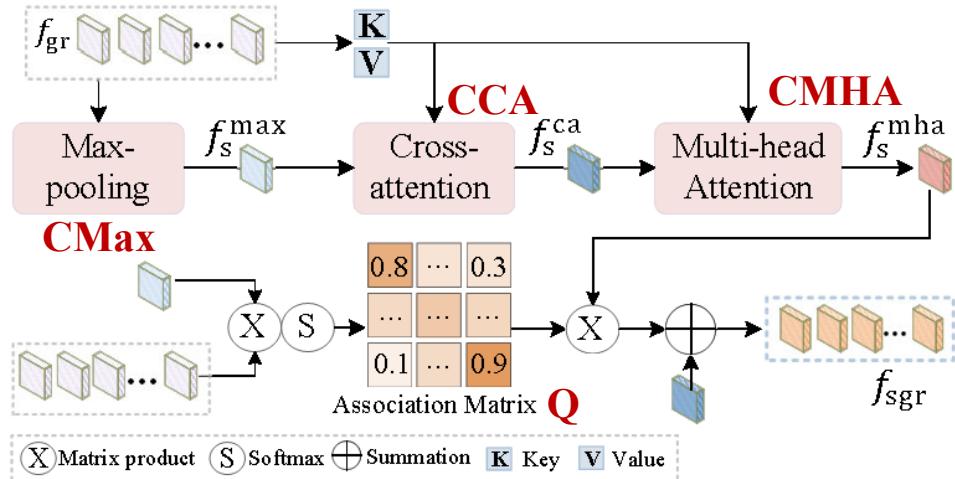
Location-based Grouping (**LG**)

Intra-group Masking Mamba (**IMM**)

BiMamba with Max-Pooling (**BMP**)

Cross-group Super-feature Sampling (**CSS**)

Experiments-Compare with SOTA Methods



Methods	Accuracy	F1
ABMIL	0.827 \pm 0.092	0.859 \pm 0.079
CSS+ABMIL	0.866 \pm 0.086 (\uparrow 3.9 %)	0.883 \pm 0.074 (\uparrow 2.4 %)
TransMIL	0.796 \pm 0.101	0.831 \pm 0.083
CSS+TransMIL	0.822 \pm 0.135 (\uparrow 2.6 %)	0.840 \pm 0.127 (\uparrow 0.9 %)
DTFD-AFS	0.872 \pm 0.054	0.890 \pm 0.050
CSS+DTFD	0.879 \pm 0.072 (\uparrow 0.7 %)	0.893 \pm 0.067 (\uparrow 0.3 %)
SSMMIL	0.809 \pm 0.092	0.838 \pm 0.078
CSS+SSMMIL	0.860 \pm 0.099 (\uparrow 5.1 %)	0.876 \pm 0.097 (\uparrow 3.8 %)
MambaMIL	0.821 \pm 0.098	0.838 \pm 0.092
CSS+MambaMIL	0.840 \pm 0.064 (\uparrow 1.9 %)	0.854 \pm 0.062 (\uparrow 1.6 %)

CSS enhances bag-level methods by effectively exploring instance relationships and aggregating dispersed tumor features.

Ablation Studies-CSS Variants

Model	CMax	CCA	CMHA	Q	Accuracy	F1
w CMax	✓	✗	✗	✗	0.885±0.057	0.899±0.048
w CMax×Q	✓	✗	✗	✓	0.904±0.106	0.920±0.089
w CCA	✓	✓	✗	✗	0.911±0.046	0.917±0.050
w CCA×Q	✓	✓	✗	✓	0.917±0.064	0.930±0.054
w CMHA	✓	✓	✓	✗	0.917±0.048	0.926±0.045
w CMHA×Q	✓	✓	✓	✓	0.930±0.062	0.940±0.053
w CSS (Ours)	✓	✓	✓	✓	0.949±0.029	0.955±0.025

CSS consistently outperforms its variants, with the association matrix Q effectively bridging local and global interactions for improved group representations.

Ablation Studies-Hyperparameter Analysis

G	Accuracy		AUC		F1							
	2	0.860±0.091	5	0.890±0.083	10	0.917±0.044	20	0.933±0.035	0.931±0.036	0.936±0.028	0.945±0.025	0.910±0.037
M_r (%)	TCGA-ESCA				TCGA-Lung							
	Accuracy	F1	Accuracy	F1	Accuracy	F1	Accuracy	F1	Accuracy	F1	Accuracy	F1
0.0	0.844	0.872	0.792	0.798	0.875	0.895	0.802	0.798	0.875	0.900	0.830	0.842
1.0	0.875	0.895	0.802	0.798	0.938	0.941	0.797	0.814	0.875	0.895	0.816	0.822
5.0	0.875	0.900	0.830	0.842	0.938	0.947	0.807	0.806	0.938	0.947	0.807	0.818
10.0	0.938	0.941	0.797	0.814	0.906	0.914	0.807	0.818	0.906	0.914	0.807	0.818
15.0	0.875	0.895	0.816	0.822								
20.0	0.938	0.947	0.807	0.806								
30.0	0.906	0.914	0.807	0.818								

G: grouping number **M_r :** masking ratio

GMMamba clusters instances with similar tissues and structures into groups, reducing redundancy and producing more precise bag representations.

1 | Introduction

2 | Method

3 | Experiments

4 | Conclusion

Key Innovations:

- Intra-group masking Mamba (**IMM**): removes local redundancy, yields compact group representations.
- Cross-group super-feature sampling (**CSS**): aggregates dispersed tumor features, enhances global representation.

Future Work:

Adaptive masking strategies and advanced instance selection.

哈爾濱工業大學
HARBIN INSTITUTE OF TECHNOLOGY

ICCV
OCT 19-23, 2025

HONOLULU
HAWAII

<https://vilab.hit.edu.cn/>

If you have any questions or concerns,
please do not hesitate to contact me.

Thank you

Email: zhengtingting008@gmail.com

Phone: (+086)186388218568 (WeChat)