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Instance-Level Object Pose Estimation is
the task of determining the precise 3D
position (translation) and 3D orientation
(rotation) of a specificc known object
instance within a given image or 3D scene.

[1] Liu, Jian, et al. "Deep learning-based object pose estimation: A
comprehensive survey." arXiv preprint arXiv:2405.07801 (2024).



.I 1.1 Template-based methods

Ve

RGB-based [2] X. Liu and J. Zhang, "6dof pose estimation with object cutout based
- d t der,” in ISMAR-Adjunct, 2019.
Template | template on a deep autoencoder,” in junc
based methods Point cloud-
| based template

[31Y. Zhang and C. Zhang, "6d object pose estimation algorithm
using preprocessing of segmentation and keypoint extraction,” in
1I2MTC, 2020.

[4] H. Jiang and M. Salzmann, “Se(3) diffusion model-based point
cloud registration for robust 6d object pose estimation,” in
NeurlPS, 2023.

[5] Z. Dang and L. Wang, “Match normalization: Learning-based
point cloud registration for 6d object pose estimation in the real
world,” |EEE TPAMI, 2024.

Template-based methods involve identifying
the most similar template from a set of
templates labeled with ground-truth object
poses.



.I 1.2 Voting-based methods
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[6] X. Liu and S. lwase, “Kdfnet: Learning keypoint distance field for
6d object pose estimation,” in IROS, 2021.

[7] P. Liu and Q Zhang, “Bdré6d: Bidirectional deep residual fusion
network for 6d pose estimation,” |EEE TASE, 2023.

[8] L. Xu and H. Qu, “6d-diff: A keypoint diffusion framework for 6d
object pose estimation,” in CVPR, 2024.
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The diffusion model My, D The kq, reverse diffusion step 3D CAD model

[9] G. Zhou and Y. Yan, "“A novel depth and color feature fusion
framework for 6d object pose estimation,” |EEE TMM, 2020.

[10] X. Liu and X. Yuan, "A depth adaptive feature extraction and
dense prediction network for 6-d pose estimation in robotic
grasping,” IEEE TII, 2023.

[11] F. Mu and R. Huang, “Temporalfusion: Temporal motion
reasoning with multi-frame fusion for 6d object pose estimation,” in
IROS, 2021.

Voting-based methods determine object
pose through a pixel-level or point-level
voting scheme.



.I 1.3 Regression-based methods
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[12] G. Gao and M. Lauri, "6d object pose regression via supervised
learning on point clouds,” in ICRA, 2020.

[13] M. Lin and V. Murali, "6d object pose estimation with pairwise
compatible geometric features,” in ICRA, 2021.
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[15]
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[14] Z. Liu and Q Wang, “Pa-pose: Partial point cloud fusion based
on reliable alignment for 6d pose tracking,” PR, 2024.

[15] K. Kleeberger and M. F. Huber, “Single shot 6d object pose
estimation,” in ICRA, 2020.

[16] V. Sarode and X. Li, “Pcrnet: Point cloud registration network
using pointnet encoding,” arXiv preprint arXiv:1908.07906, 2019.

Geometry-guided

regression [17] S. H. Bengtson and H. Astrom, “Pose estimation from rgb
Direct images of highly symmetric objects using a novel multi-pose loss
regression and differential rendering,” in IROS, 2021.

methods aim to directly
obtain the object pose from the learned
features.




.I 1.4 Correspondence-based methods

[18] M. Rad and V. Lepetit, "“Bb8: A scalable, accurate, robust to
partial occlusion method for predicting the 3d poses of challenging
objects without using depth,” in ICCV, 2017.
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(b) Reconstruction Block (c) Pose Block
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: . 00 o J [19] B. Tekin and S. N. Sinha, “Real-time seamless single shot 6d
el oy | :m object pose prediction,” in CVPR, 2018.
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[21] H. Chen and P. Wang, "Epro-pnp: Generalized end-to-end prob-
abilistic perspective-n-points for monocular object pose estima-
tion,” in CVPR, 2022.

[22] D. Wang and G. Zhou, “Geopose: Dense reconstruction guided
6d object pose estimation with geometric consistency,” |EEE TMM,
2021.

[23]L. Huang and T. Hodan, “Neural correspondence field for object
pose estimation,” in ECCV, 2022.

Correspondence-based object pose
Sparse estimation refers to techniques that involve
[Correspondence correspondence identifying correspondences between the

-based methods ] input data and the object CAD model.




.I 2.1 Motivation

Will this grasp Is the car's perception Will this maneuver be safe?
succeed? reliable?

Answering this requires a statistically valid confidence region.

For safety-critical tasks, a single pose estimate is not enough.
We need to quantify the uncertainty.



.I 2.2 Uncertainty Quantification
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a statistically guaranteed coverage probability (e.g., 90%)?

[24] Gawlikowski, Jakob, et al. "A survey of uncertainty in deep neural networks." Artificial Intelligence Review 56.Suppl 1

(2023): 1513-1589.




] 23 Pose Confidence Region Estimation
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Inductive conformal prediction is a framework that wraps any machine learning model to

produce prediction sets with a statistically guaranteed coverage probability (e.g., 90%).

[25] Yang, H., & Pavone, M. (2023). Object pose estimation with statistical guarantees: Conformal keypoint detection and geometric
uncertainty propagation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8%47—8958).



.I 2.4 Narrower Confidence Region
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roll 100 —=75

Sampling method [25] Deterministic method

Narrower confidence regions of our deterministic approach

compared to the sampling method

[25] Yang, H., & Pavone, M. (2023). Object pose estimation with statistical guarantees: Conformal keypoint detection and geometric
uncertainty propagation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 89{1(7)—8958).



.I 3 Overview of the proposed method

P@ (X;H | I/+l)

I+
| D

ﬂ Tnducti (d) 6D Pose
nduc :
FT——— Con;‘lorll:l] Zl Deterministic Confidence Region
Regression Prediction Propalgatlon
T —— 1 :
(a) Input (b) Keypoint : (c) 2D Keypoint ! Be,
Image Gaussian Distributions | Confidence Region ! % Pred oy
! ! ®GT :
1
/ D a, %) user-specified \ : T4
{ll i1} —— 73 /+1 I/+1 . -
2, x> 4 | ti —] 0 I o(tr | ) i+l . Uncertainty ¥
© r,x, —> — sorting ¢ K@, e)|——=| L, =diag(-)s0 || propagation | X, :[ R z}
P2 - =_ | ! o g 57 5
{I ‘- 4} trained — - \ g LFT Z—i e R L
{ :,X } 4 aw(LIEJ) N e (IHI,G)/ Single-shot PnP : Jacobian 'R}d oc ZR, ']:,d oc Zt

Our method produces a guaranteed 6D pose confidence region by propagating

uncertainty from 2D keypoint sets established via inductive conformal prediction.
11



.I 3.1 Keypoint Detection
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Keypoint detection and uncertainty quantification using a direct regression-based
approach, replacing computationally intensive heatmaps.

Training a model using negative A deep neural network maps an
log-likelihood (NLL) loss. image to N Gaussian distributions.

N
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3.2 Inductive Conformal Prediction
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ICP produces statistically guaranteed keypoint confidence regions for finite samples,
ensuring the regions contain the true value at a user-specified coverage rate.
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.I 3.3 Sampling-based Uncertainty Propagation

Conformal Keypoint Detection Geometric Uncertainty Propagation
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Sampling keypoints from 2D confidence regions and repeatedly solving PnP has

the following issues:

Slow speed: The time increases with the number of samples.
Inaccuracy: P3P uses only three keypoints, resulting in low-quality pose samples.

Large intervals: The convex hull of noisy pose samples unnecessarily expands the
final confidence interval.



.I 3.4 Implicit Function Theorem
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.I 3.5 6D Pose Confidence Region

Based on the Jacobian matrix, we apply uncertainty propagation
4 Pred . from the 2D keypoint to 6D pose.

® GT
d e T
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* Pred \
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This covariance matrix defines an ellipsoid in the 6D pose space,
(K which is the final, compact confidence region output by our method.

16



.I 4 Dataset & Metric

Dataset

SPEED (Spacecraft Pose Estimation Dataset): A
satellite dataset for testing applicability in safety-
critical scenarios.

LMO (LineMOD Occlusion): Images of common
objects with significant object clutter and
occlusion.

17



.I 4 Dataset & Metric

Keypoint Coverage Rate: The probability that the confidence region contains the
ground truth keypoint.

K
1 -
= ;::1]1 (%% € KNI, o))

6D Pose Coverage Rate: The probability that the confidence region contains the
ground truth pose.

i Z]I (R € R (TF,¢) Z]I t € R (1% ¢))

Confidence Region Volume: A measure of the compactness (or tightness) of the
confidence region.

4 4
VR = g7r\/olet(z:R), Vi = gm/det(z:t)
18



.I 5.1 Runtime and Accuracy

LMO [23] Ours [9] [11]
Objects e=01 e€e=04
ape (1) 76.78 | 71.70 79.52 | 69.14
can (2) 91.96 | 73.41 75.97 | 86.09
- - cat (3) 90.11 | 87.36  90.59 | 65.12
o c? P c: driller (4) 89.29 | 79.32 83.08 | 61.44
LMO [23] 0.0038 0.0361 0.0076 0.0550 dlle (5) 84.39 8271 8254 7306
SPEED [22] 0.0032 0.0358 0.0064 0.0521 ngbOX ( 6) 6 ] 5 0 0 8. 43
Inference and Propagation Time glue (7) 69.83 | 5649 7108 1 55.37
holepuncher (8) | 86.44 | 81.65 82.89 | 69.84
mean 7445 | 67.33 70.71 61.06
SPEED [22] 97.09 | 57.80 57.40 | 57.46

2D Keypoint Detection Accuracy

19



J] 52 2D Keypoint Confidence Region

Radar Chart of 2D Keypoint Confidence Region Radii
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LMO [23] Ours K" [9] ich
Objects e=01 e€e=04|e=01 e€=04
1 90.37 6151 | 8835  64.87
Regression-based 2 89.97 5990 | 9354  61.81
3 91.63 64.63 |9230  63.69
4 91.84 5930 | 90.86 64.74
: : 5 90.31 6409 |90.13  64.94
2D K‘_*yp°'"t Confidence —_— 6 8840 5990 | 88.86  60.37
Region Coverage Rate 7 92.02 5434 | 9197  59.83
8 90.66 5942 |9331  66.86
mean 90.65 60.38 91.16 63.38
SPEED [22] | 89.66 6125 | 88.88  62.64




.I 5.3 6D Pose Confidence Region

Coverage Rate

LMO Ours [9] + Samp. [9] + Det.
Objects | T.¢ RS Tr s T, RS
1 70.52 91.26 97.26 N/A 76.88 93.38
2 88.73 89.98 99.25 N/A 99.59 98.18
3 77.28 87.55 98.29 N/A 88.02 90.59
4 85.09 96.62 97.12 N/A 90.28 98.85
5 97.18 79.70 99.81 N/A 90.13 76.41
6 98.36 1.46 77.81 N/A 98.63 1.37
7 79.773 87.76 98.64 N/A 89.99 91.84
8 69.01 86.94 99.92 N/A 98.51 98.02
mean 83.24 77.66 96.61 N/A 91.50 81.08
SPEED 86.69 88.81 6.40 N/A 87.10 90.92

N/A: Indicates that the confidence regions of all images exceed the threshold.
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.I 5.3 6D Pose Confidence Region

Confidence Region Volume

LMO Ours [9] + Samp. [9] + Det.
Objects | 7% Out RS2 Out T2 Out RS Out | 7, Out RY Out
1 0.9 0 28.96 69 12.6 0 2522 1041 0.5 0 50.3 64
2 0.7 0 9.9 9 28.3 0 N/A 1207 0.9 0 45.0 12
3 2.8 3 50.7 113 66.8 0 N/A 1052 1.4 0 42.9 73
4 1.5 0 6.5 12 52.0 0 N/A 1214 0.1 0 3.5 2
5 04 0 52.8 43 63.1 0 N/A 1064 0.2 0 24.7 24
6 57.6 11 5144 1055 82.2 1 N/A 1095 | 59.9 10 515.7 1057
7 4.8 0 62.9 98 252.4 0 N/A 809 0.8 0 67.5 56
8 0.03 0 4.6 3 322.2 0 N/A 1210 | 0.3 0 51.6 9
mean 8.6 2 91.3 175 109.9 0 2522 1070 | 8.0 1 100.1 162
SPEED 0.7 0 0.2 ) 287.8 920 210.6 898 73.4 50 4.4 18

Out: The number of images whose confidence region volume exceeds the threshold.

N/A: Indicates that the confidence regions of all images exceed the threshold.
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5.4 Confidence Region Visualization
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onfidence Region Visualization
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I 5.4 Confidence Region Visualization
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.I 6 Conclusion

We propose an efficient and direct framework that employs an analytical method based
on the Implicit Function Theorem to estimate compact 6D pose confidence regions,

superseding slow and inaccurate sampling-based approaches.

Our method provides statistically guaranteed data to support subsequent safety-critical

applications.
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