
1 National University of Defense Technology
2 Hunan Provincial Key Laboratory of Image Measurement and Vision Navigation

Deterministic Object Pose 

Confidence Region Estimation

1

ICCV2025

October 22, 2025

Jinghao Wang1,2 Zhang Li1,2 Zi Wang1,2,∗

Banglei Guan1,2Yang Shang1,2 Qifeng Yu1,2



1 Object Pose Estimation

Instance-Level Object Pose Estimation is
the task of determining the precise 3D
position (translation) and 3D orientation
(rotation) of a specific, known object
instance within a given image or 3D scene.
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[1] Liu, Jian, et al. "Deep learning-based object pose estimation: A 
comprehensive survey." arXiv preprint arXiv:2405.07801 (2024).
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1.1 Template-based methods
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[2] X. Liu and J. Zhang, “6dof pose estimation with object cutout based
on a deep autoencoder,” in ISMAR-Adjunct, 2019.

[3] Y. Zhang and C. Zhang, “6d object pose estimation algorithm
using preprocessing of segmentation and keypoint extraction,” in
I2MTC, 2020.

[4] H. Jiang and M. Salzmann, “Se(3) diffusion model-based point
cloud registration for robust 6d object pose estimation,” in
NeurIPS, 2023.

[5] Z. Dang and L. Wang, “Match normalization: Learning-based
point cloud registration for 6d object pose estimation in the real
world,” IEEE TPAMI, 2024.

Template-based methods involve identifying 
the most similar template from a set of 
templates labeled with ground-truth object 
poses. 
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1.2 Voting-based methods
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[6] X. Liu and S. Iwase, “Kdfnet: Learning keypoint distance field for
6d object pose estimation,” in IROS, 2021.

[7] P. Liu and Q. Zhang, “Bdr6d: Bidirectional deep residual fusion
network for 6d pose estimation,” IEEE TASE, 2023.

[8] L. Xu and H. Qu, “6d-diff: A keypoint diffusion framework for 6d
object pose estimation,” in CVPR, 2024.

[9] G. Zhou and Y. Yan, “A novel depth and color feature fusion
framework for 6d object pose estimation,” IEEE TMM, 2020.

[10] X. Liu and X. Yuan, “A depth adaptive feature extraction and 
dense prediction network for 6-d pose estimation in robotic 
grasping,”IEEE TII, 2023.

[11] F. Mu and R. Huang, “Temporalfusion: Temporal motion 
reasoning with multi-frame fusion for 6d object pose estimation,” in 
IROS, 2021.

Voting-based methods determine object
pose through a pixel-level or point-level
voting scheme.
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1.3 Regression-based methods
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[12] G. Gao and M. Lauri, “6d object pose regression via supervised
learning on point clouds,” in ICRA, 2020.

[13] M. Lin and V. Murali, “6d object pose estimation with pairwise
compatible geometric features,” in ICRA, 2021.

[14] Z. Liu and Q. Wang, “Pa-pose: Partial point cloud fusion based 
on reliable alignment for 6d pose tracking,” PR, 2024.

[15] K. Kleeberger and M. F. Huber, “Single shot 6d object pose 
estimation,” in ICRA, 2020.

[16] V. Sarode and X. Li, “Pcrnet: Point cloud registration network
using pointnet encoding,” arXiv preprint arXiv:1908.07906, 2019.

[17] S. H. Bengtson and H.  Astrom, “Pose estimation from rgb 
images of highly symmetric objects using a novel multi-pose loss 
and differential rendering,” in IROS, 2021.

Regression-based methods aim to directly
obtain the object pose from the learned 
features.

[15]



1.4 Correspondence-based methods
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[18] M. Rad and V. Lepetit, “Bb8: A scalable, accurate, robust to 
partial occlusion method for predicting the 3d poses of challenging 
objects without using depth,” in ICCV, 2017.

[19] B. Tekin and S. N. Sinha, “Real-time seamless single shot 6d 
object pose prediction,” in CVPR, 2018.

[20] B. Doosti and S. Naha, “Hope-net: A graph-based model for 
hand-object pose estimation,” in CVPR, 2020.

[21] H. Chen and P. Wang, “Epro-pnp: Generalized end-to-end prob-
abilistic perspective-n-points for monocular object pose estima-
tion,” in CVPR, 2022.

[22] D. Wang and G. Zhou, “Geopose: Dense reconstruction guided 
6d object pose estimation with geometric consistency,” IEEE TMM,
2021.

[23]L. Huang and T. Hodan, “Neural correspondence field for object
pose estimation,” in ECCV, 2022.

Correspondence-based object pose
estimation refers to techniques that involve 
identifying correspondences between the 
input data and the object CAD model.

[22]



2.1
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Motivation

Answering this requires a statistically valid confidence region.
 
For safety-critical tasks, a single pose estimate is not enough. 
We need to quantify the uncertainty.

Will this grasp 
succeed?

Is the car's perception 
reliable?

Will this maneuver be safe?



2.2 Uncertainty Quantification

[24] Gawlikowski, Jakob, et al. "A survey of uncertainty in deep neural networks." Artificial Intelligence Review 56.Suppl 1 
(2023): 1513-1589.

a statistically guaranteed coverage probability (e.g., 90%)?



Pose Confidence Region Estimation2.3
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Inductive conformal prediction is a framework that wraps any machine learning model to

produce prediction sets with a statistically guaranteed coverage probability (e.g., 90%).

[25] Yang, H., & Pavone, M. (2023). Object pose estimation with statistical guarantees: Conformal keypoint detection and geometric 
uncertainty propagation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8947-8958).



Narrower Confidence Region2.4
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[25] Yang, H., & Pavone, M. (2023). Object pose estimation with statistical guarantees: Conformal keypoint detection and geometric 
uncertainty propagation. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 8947-8958).

Deterministic methodSampling method [25]

Narrower confidence regions of our deterministic approach

compared to the sampling method



Our method produces a guaranteed 6D pose confidence region by propagating 

uncertainty from 2D keypoint sets established via inductive conformal prediction.

Overview of the proposed method 3
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Keypoint Detection3.1
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Keypoint detection and uncertainty quantification using a direct regression-based 

approach, replacing computationally intensive heatmaps.

A deep neural network maps an 

image to N Gaussian distributions.

Training a model using negative 

log-likelihood (NLL) loss.



Inductive Conformal Prediction 3.2

13

(b) Keypoint

Gaussian Distributions

(c) 2D Keypoint

Confidence Region

1 1( | )l l

n

+ +

 x I 1( ),r l+
I

user-specified

0 1

1 1{ , }I x
2 2{ , }I x
3 3{ , }I x
4 4{ , }I x

i

sorting

cal

… … …

( )i

( )l


  
F

trained
1( ),r l+

I

(e)

1 1( | )l l

n

+ +

 x Ir

Inductive

Conformal 

Prediction

ICP produces statistically guaranteed keypoint confidence regions for finite samples, 

ensuring the regions contain the true value at a user-specified coverage rate.

Conformal prediction of 2D confidence 

regions for a new sample.

Non-conformity function for measuring 

the difference between a new sample 

and the calibration set.



Sampling-based Uncertainty Propagation3.3
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Sampling keypoints from 2D confidence regions and repeatedly solving PnP has 

the following issues:

Slow speed: The time increases with the number of samples.

Inaccuracy: P3P uses only three keypoints, resulting in low-quality pose samples.

Large intervals: The convex hull of noisy pose samples unnecessarily expands the 

final confidence interval.



Implicit Function Theorem 3.4
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6D Pose Confidence Region3.5
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which is the final, compact confidence region output by our method.

Based on the Jacobian matrix, we apply uncertainty propagation

from the 2D keypoint to 6D pose.



Dataset & Metric4
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SPEED (Spacecraft Pose Estimation Dataset): A 

satellite dataset for testing applicability in safety-

critical scenarios.

LMO (LineMOD Occlusion): Images of common 

objects with significant object clutter and 

occlusion.

Dataset



Dataset & Metric4
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Keypoint Coverage Rate: The probability that the confidence region contains the 

ground truth keypoint.

Confidence Region Volume: A measure of the compactness (or tightness) of the 

confidence region.

6D Pose Coverage Rate: The probability that the confidence region contains the 

ground truth pose.



Runtime and Accuracy5.1

19

Inference and Propagation Time

2D Keypoint Detection Accuracy 



2D Keypoint Confidence Region5.2

20
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Radar Chart of 2D Keypoint Confidence Region Radii

2D Keypoint Confidence 

Region Coverage Rate



6D Pose Confidence Region 5.3
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Coverage Rate

N/A: Indicates that the confidence regions of all images exceed the threshold.



6D Pose Confidence Region 5.3
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6D Pose Confidence Region 5.3
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Out: The number of images whose confidence region volume exceeds the threshold.

N/A: Indicates that the confidence regions of all images exceed the threshold.

Confidence Region Volume 



Confidence Region Visualization 5.4
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Confidence Region Visualization 5.4
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Confidence Region Visualization 5.4
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Conclusion6
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We propose an efficient and direct framework that employs an analytical method based 

on the Implicit Function Theorem to estimate compact 6D pose confidence regions, 

superseding slow and inaccurate sampling-based approaches. 

Our method provides statistically guaranteed data to support subsequent safety-critical 

applications.
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