
Chengtang Yao1,2, Lidong Yu3,4, Zhidan Liu1,2, Jiaxi Zeng1,2, 

Yuwei Wu1,2, Yunde Jia2,1

Diving into the Fusion of Monocular Priors 
for Generalized Stereo Matching

1Beijing Institute of Technology, China, 2Shenzhen MSU-BIT University, China, 3NVIDIA, 4NEOLIX


null

31.536





Introduction

Disparity Estimation Depth Computation
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Problem
Challenges on ill-posed regions like occlusions and non-Lambertian
surfaces.
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Ambiguous matching

Problem
The matching formulation makes it naturally hard for the stereo matching
to handle ill-posed regions like occlusions and non-Lambertian surfaces.

Occlusion

Lack of matching

Texture-less region

Fooled matching

Glass
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Motivation
Biased monocular priors from limited data

[1] Changjiang Cai, Matteo Poggi, Stefano Mattoccia, and Philippos Mordohai. Matching-space stereo networks for cross-domain generalization[C]. 3DV, 2020.
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[4] Zhaoshuo Li, Xingtong Liu, Nathan Drenkow, Andy Ding, Francis X Creighton, Russell H Taylor, and Mathias Unberath. Revisiting stereo depth estimation from a sequence-to-sequence perspective with transformers[C]. ICCV, 2021.
[5] Xianqi Wang, Gangwei Xu, Hao Jia, and Xin Yang. Selective-stereo: Adaptive frequency information selection for stereo matching[C]. CVPR, 2024.

Domain-invariant Features [1] Edge Features [2]

Context Features [3] Receptive Field [4] Frequency Information [5]
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Motivation
Unbiased monocular priors from large foundation model

[1] Yang L, Kang B, Huang Z, et al. Depth anything: Unleashing the power of large-scale unlabeled data[C]. CVPR, 2024.
[2] Ke B, Obukhov A, Huang S, et al. Repurposing diffusion-based image generators for monocular depth estimation[C]. CVPR, 2024.

DepthAnything [1] Marigold [2]
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Motivation

Stereo Matching

Fusing unbiased monocular priors from large foundation model for
generalized stereo matching
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Challenges
The fusion is nontrivial:

 The gap between the affine-invariant relative depth from monocular
depth and absolute depth from disparity;

Scale Ambiguity in Monocular Depth
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Challenges
The fusion is nontrivial:

 The gap between the affine-invariant relative depth from monocular
depth and absolute depth from disparity;

Scale Ambiguity in Monocular Depth

Alignment

Relative Depth Absolute Depth
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GT Disparity
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Challenges
The alignment is nontrivial:

 Over-confidence in the disparity update will lead to local optima;
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Challenges
The alignment is nontrivial:

 Over-confidence in the disparity update will lead to local optima;

 Noisy disparity results computed at the first several iterations will
misguide the fusion and slow down good fusion;

GT Disparity
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Contributions
 Local Binary Ordering Map: indicating whether two pixels are farther or

closer;
Local Binary Ordering Map

Monocular Depth Disparity
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Contributions
 Local Binary Ordering Map: indicating whether two pixels are farther or

closer;

 A noisy linear regression problem about the registration parameters;

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑏𝑏)

D𝑚𝑚

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (𝑎𝑎)

�D𝑚𝑚

Local Binary Ordering Map

Monocular Depth Disparity
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Model
 Feature Encoder
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Model
 Monocular Encoder
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Model
 Iterative Local Fusion
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Model
 Iterative Local Fusion
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Model
 Iterative Local Fusion

𝑀𝑀 𝑢𝑢,𝑣𝑣 = {𝜎𝜎(𝐷𝐷 𝑢𝑢′,𝑣𝑣′ − 𝐷𝐷(𝑢𝑢, 𝑣𝑣))}}
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Model
 Iterative Local Fusion

Hidden State

Cost Volume

Context Features

M
ul

ti-
le

ve
l

G
R

U

L

Hidden State C
on

v 
Bl

oc
k

Initial
Disparity Update

Δ𝑑𝑑

Disparity

Monocular Depth Monocular 
Ordering Map

Binocular 
Ordering Map

LB
P-

lik
e 

En
co

de
r

C

C
on

v 
Bl

oc
k Guidance

Iterative Local Fusion


6.192





Model
 Iterative Local Fusion
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Model
 Global Fusion
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Model
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Experiments
 Zero-Shot Generalization on Non-Lambertian Surfaces
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Experiments
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Experiments
 Zero-Shot Generalization in General Scenes
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Experiments
 Zero-Shot Generalization in the Wild
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Experiments
 Effectiveness and Robustness

of Modules under Zero-Shot
Testing

 Comparison of Monocular
Depth Estimation Methods
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Experiments
 Model Scalability with Increasing Data from the TranScene Dataset
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Discussion
 Transparent scenes -> both the transparent surfaces and the behind

scene are significant

Left Image Right Image

GT Prediction

Left Image Right Image

GT Prediction
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Discussion
 Transparent scenes -> both the transparent surfaces and the behind

scene are significant

Task: Retrieve the apple behind the glass door.

Something invisible 
got in my way!

Case 2:

Open the door and 
retrieve the apple.

Case 3:

A glass door adorned 
with the Apple logo?

Case 1:



Discussion
 Close black screen and dark tunnel -> information from video streams

and segmentation

Left Image Right Image

GT Prediction

Left Image Right Image

GT Prediction
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Thanks for Your Attention
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