

Moto: Latent Motion Token as the Bridging Language for Learning Robot Manipulation from Videos

**Yi Chen, Yuying Ge, Weiliang Tang, Yizhuo Li, Yixiao Ge,
Mingyu Ding, Ying Shan, Xihui Liu**

The University of Hong Kong, ARC Lab, Tencent PCG,
The Chinese University of Hong Kong, University of California, Berkeley

香港大學
THE UNIVERSITY OF HONG KONG

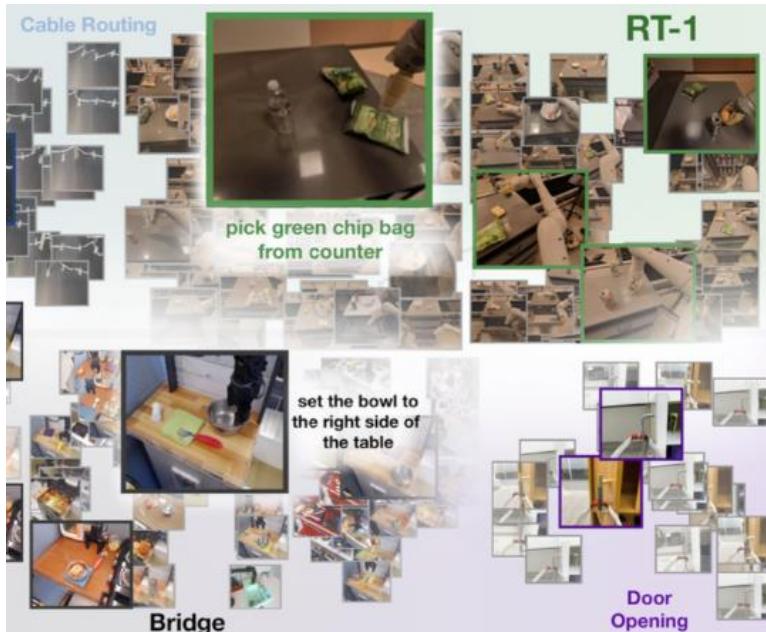
Background

- Robot data collection is slow and sparse, with varying action spaces across embodiments.



Background

- Video data is more diverse and scalable, which contains rich motion-related knowledge.



Open-X-Embodiment

Motivation

- Large Language Models (LLMs) pre-trained on extensive corpora have shown significant success in various natural language processing (NLP) tasks with minimal fine-tuning.
- This success offers new promise for robotics, which has long been constrained by the high cost of action-labeled data.
- *Given the abundant video data containing interaction-related knowledge available as a rich “corpus”, can we apply a similar generative pretraining approach to enhance robot learning?*

Motivation

- The key challenge is to identify an effective representation for autoregressive pre-training that benefits robot manipulation tasks.

Motivation

- Inspired by the way humans learn new skills through observing dynamic environments, we propose that, we propose that **effective robotic learning should emphasize motion-related knowledge**, which is **closely tied to low-level actions** and is **independent of hardware**, facilitating the transfer of learned motions to actual robot actions.

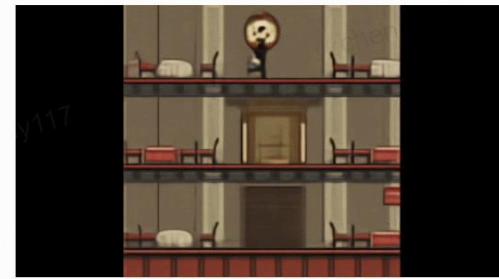


Motivation

- Genie is the first generative interactive environment trained in an unsupervised manner from unlabelled Internet videos using latent actions.

cheny117

latent actions: 6, 6, 7, 6, 7, 6, 5, 5, 2, 7

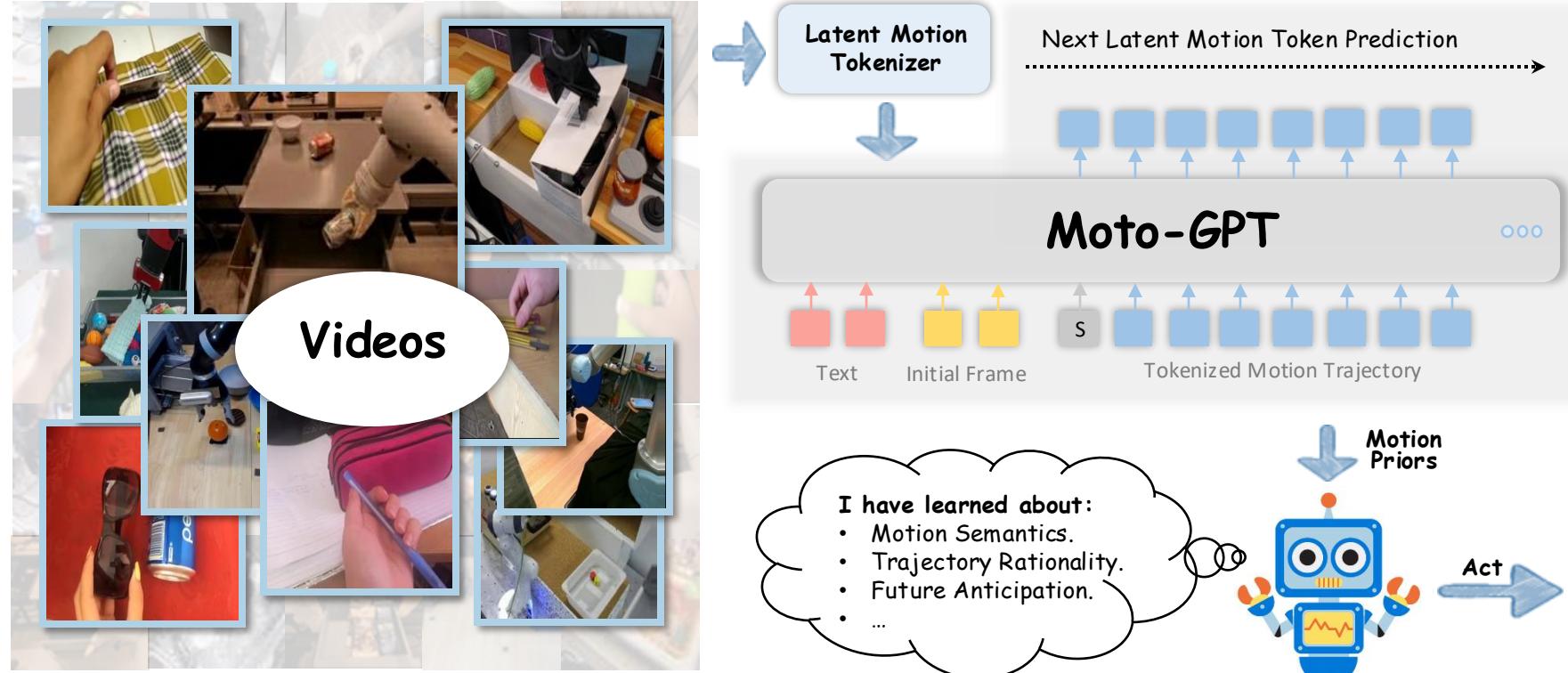


cheny117

latent actions: 5, 6, 2, 2, 6, 2, 5, 7, 7, 7

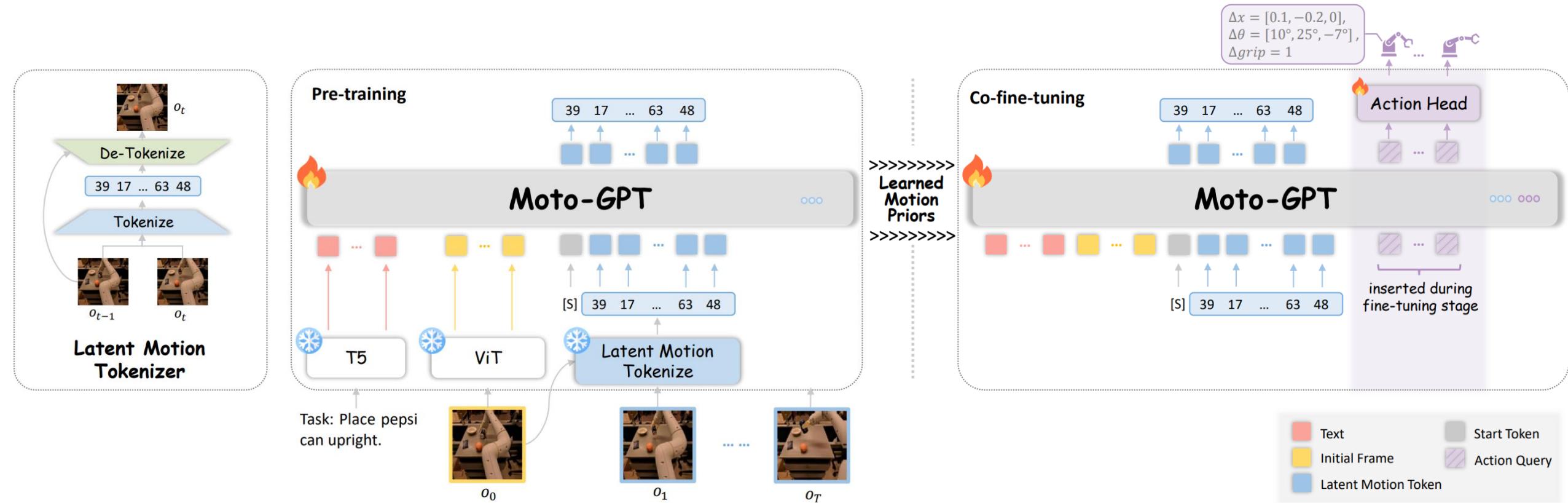
Overview of Moto

- Moto utilizes latent Motion Tokens as a “language” interface to bridge generative pre-training on video data with precise robot control.

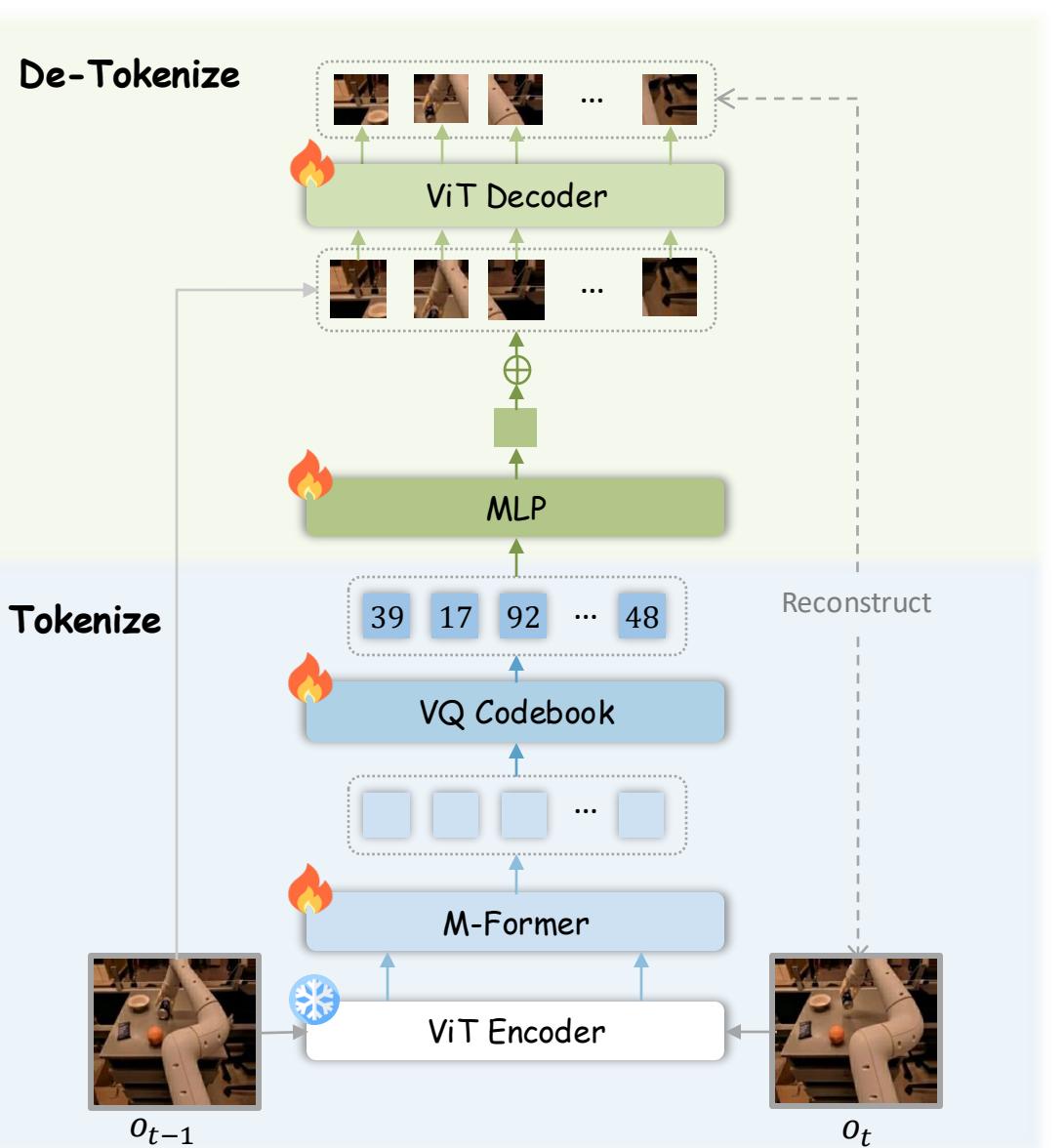


Training Procedures of Moto

- Moto consists of three stages: 1) unsupervised training of the Latent Motion Tokenizer, 2) pre-training of the generative model, and 3) co-fine-tuning for robot policy adaptation.

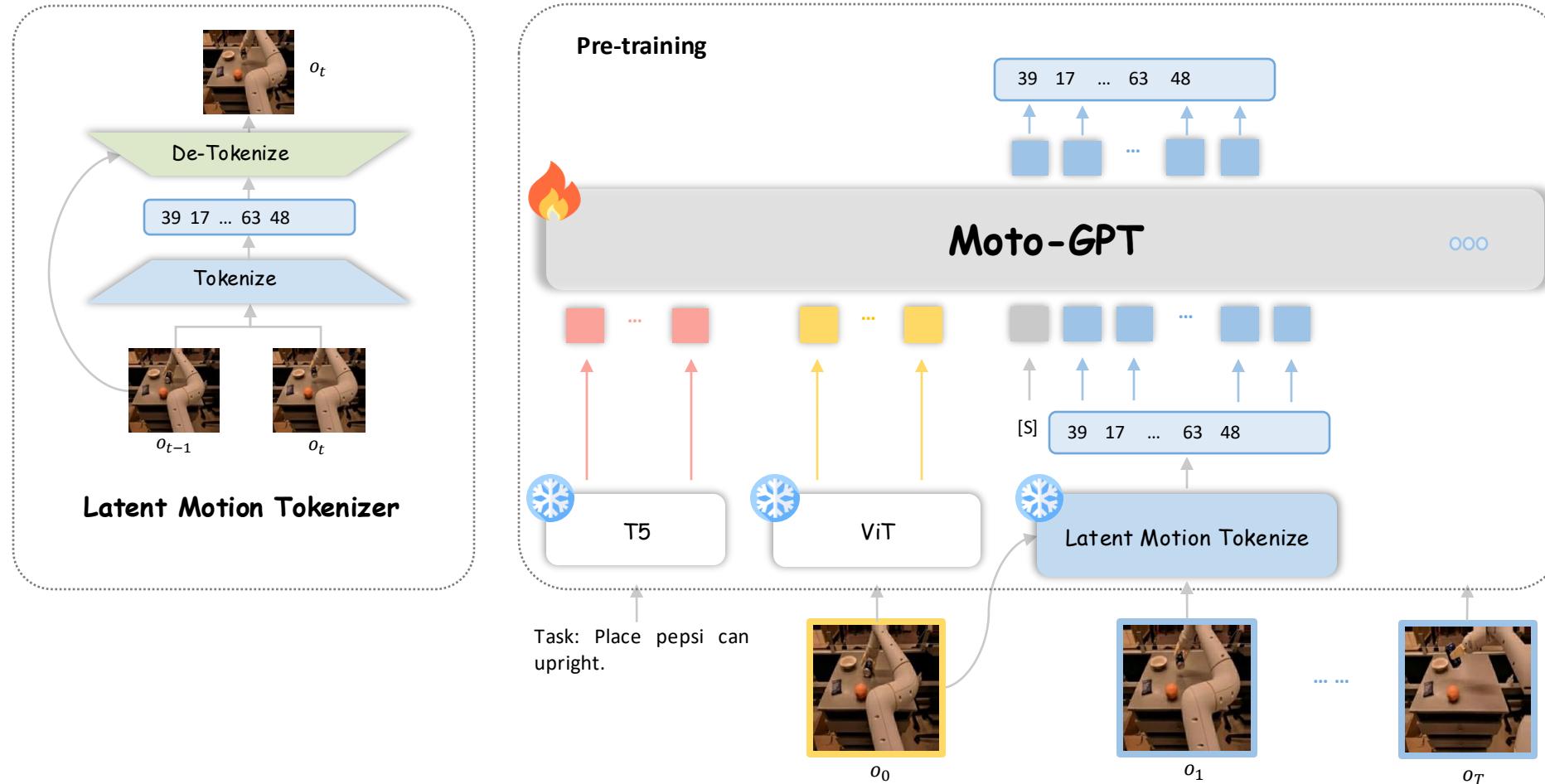


Stage-1: Latent Motion Tokenizer

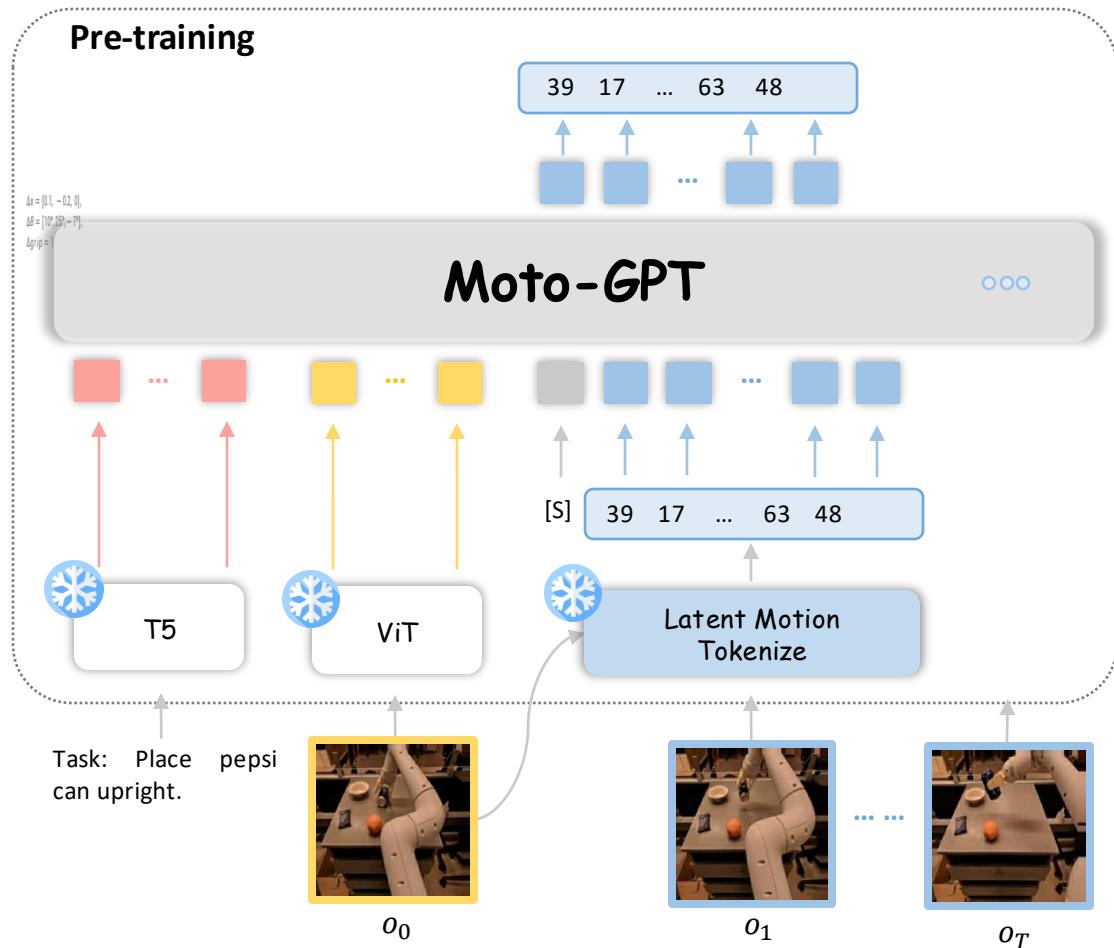
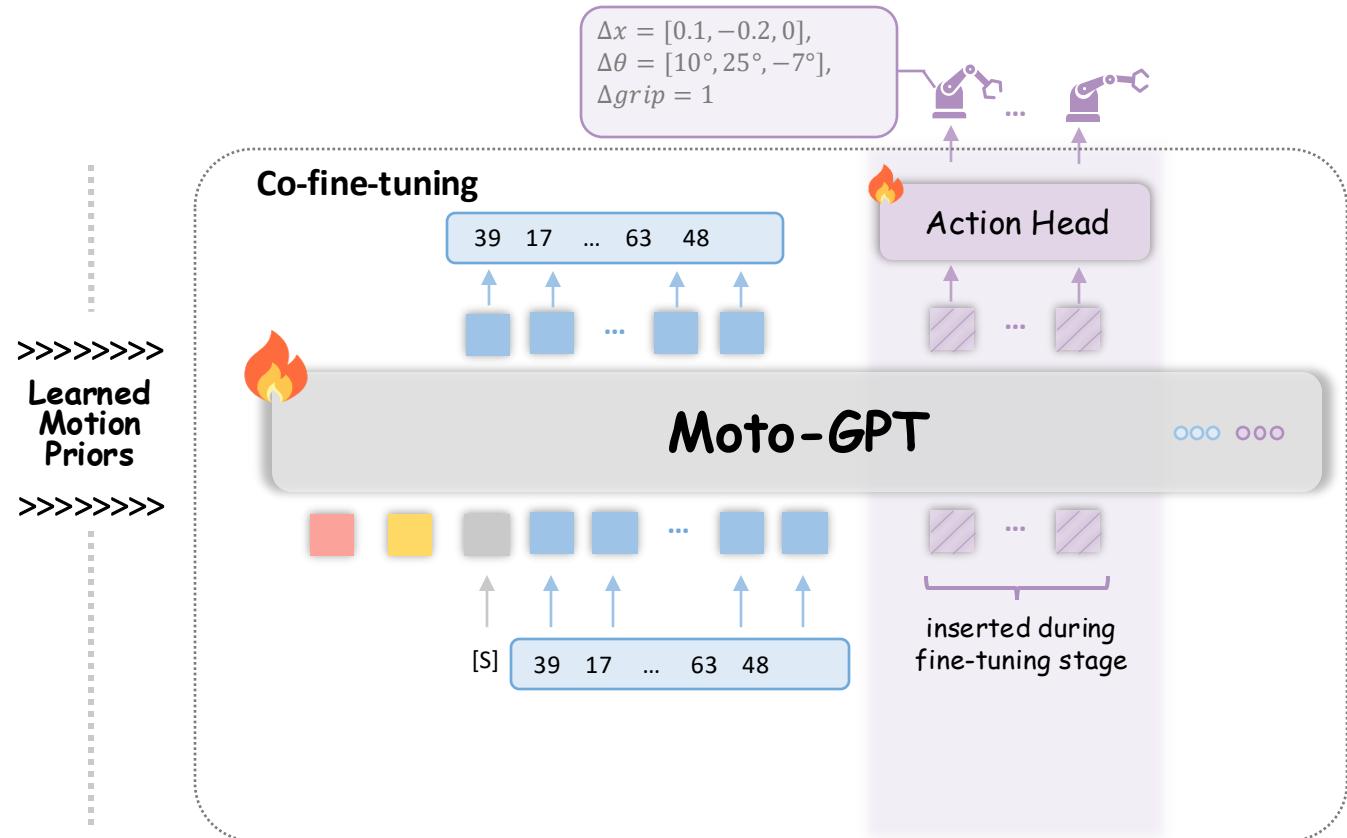


- The Latent Motion Tokenizer produces discrete latent motion tokens from two consecutive video frames.
- It regularizes the decoder to reconstruct the second frame based on the first frame and the discrete tokens, capturing essential visual motion between frames.

Stage-2: Motion Token Autoregressive Pre-training



Stage-3: Co-fine-tuning for Robot Manipulation

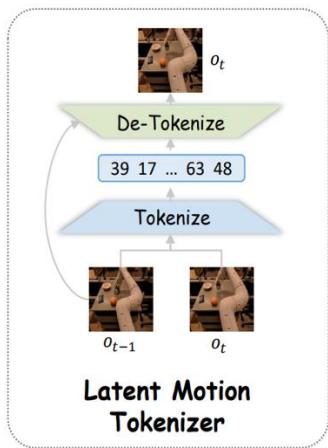
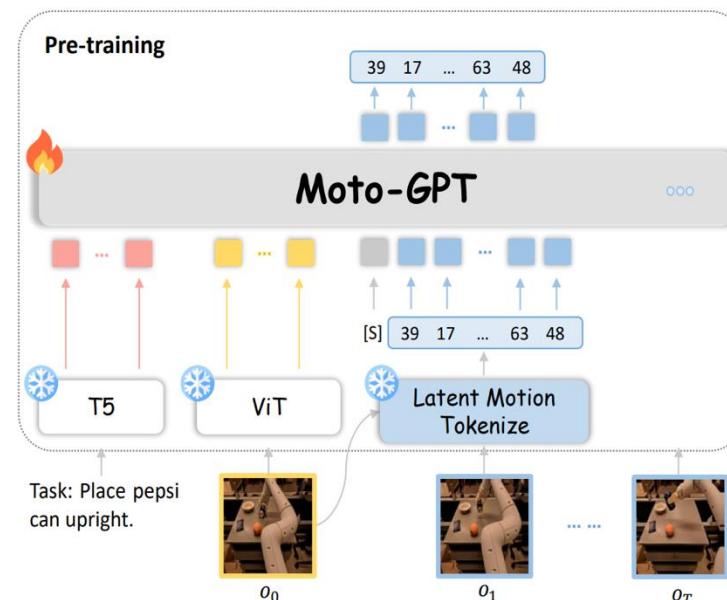


■ Text
■ Initial Frame
■ Start Token
■ Latent Motion Token
■ Action Query

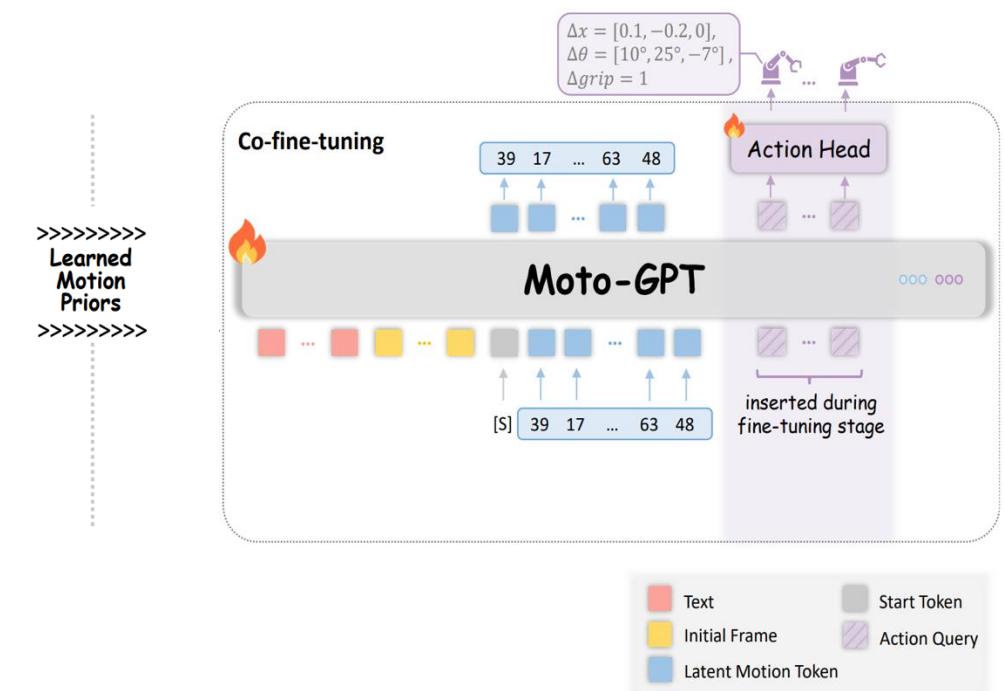
Experiments

To comprehensively evaluate the effectiveness of Moto, we study three key questions:

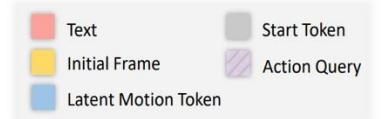
- **Q1 (Interpretability):** Do latent motion tokens represent meaningful visual motions?
- **Q2 (Motion Priors):** Does Moto-GPT learn useful priors about trajectories?
- **Q3 (Performance):** Can these priors be effectively transferred to real robot policies?



Q1 (Interpretability)



Q3 (Performance)

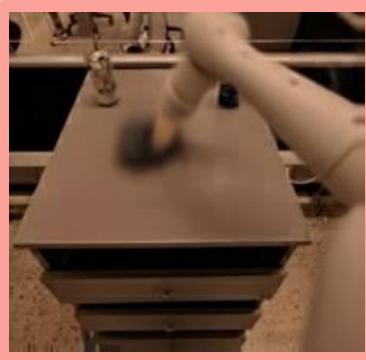


Latent Motion Token as an Interpretable Motion Language (Q1)

- Visualization of latent motion token interpretability

Initial Frame

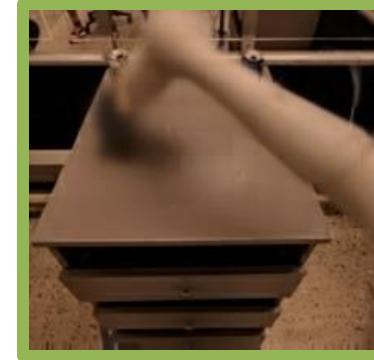
forward



backward

down

left, forward



right, forward

[69, 35, 34, 36, 108, 117, 101]

[61, 8, 48, 90, 108, 60, 39, 118]

[62, 81, 108, 20, 41, 60, 19, 64]

[68, 119, 41, 60, 123, 101, 39, 41]

[34, 60, 93, 25, 11, 13, 72, 117]

Latent Motion Token as an Interpretable Motion Language (Q1)

- Video imitation generation via latent motion tokens

Initial Frame A

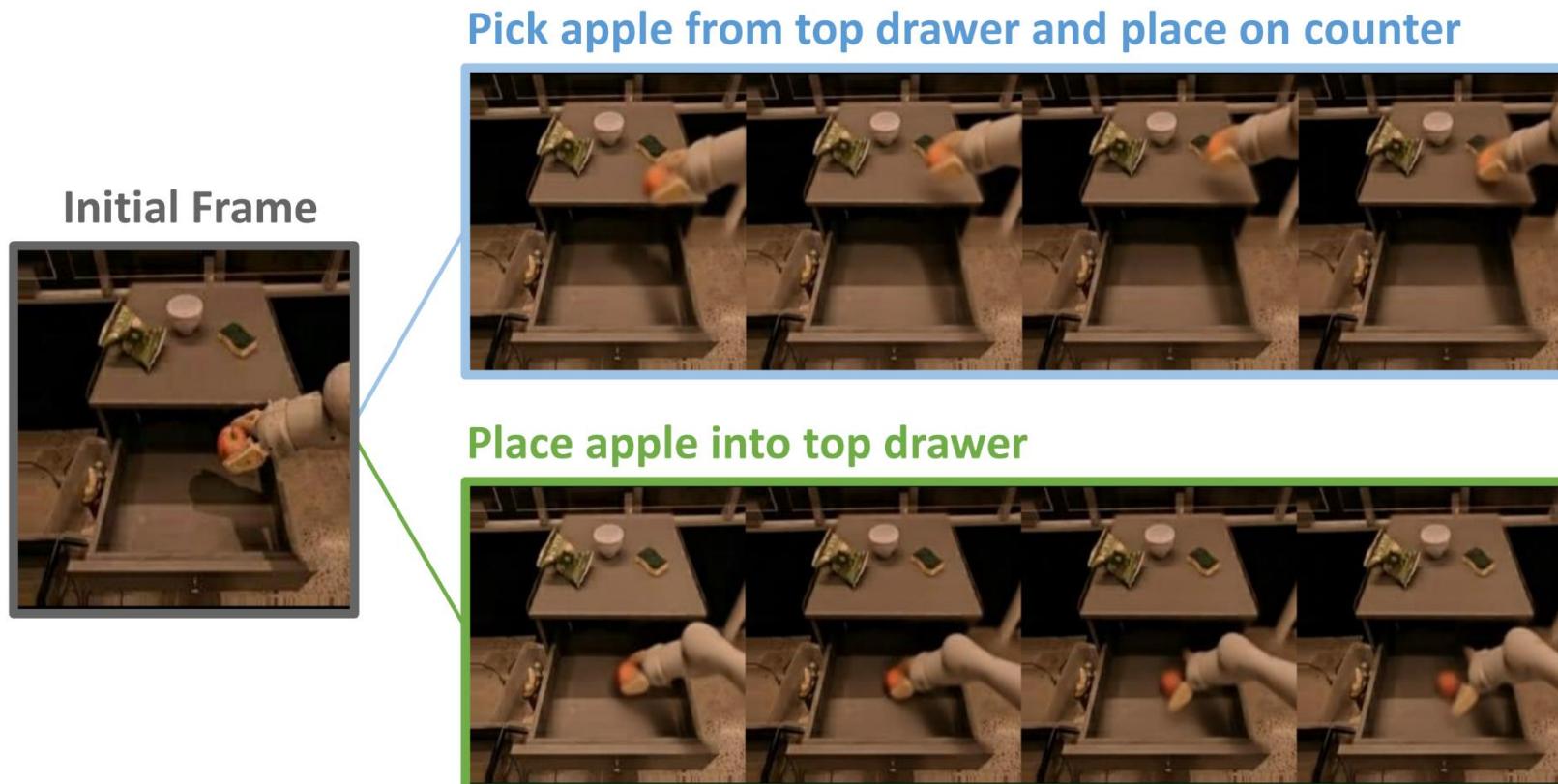
Demonstration Video

Imitation Video

Initial Frame B

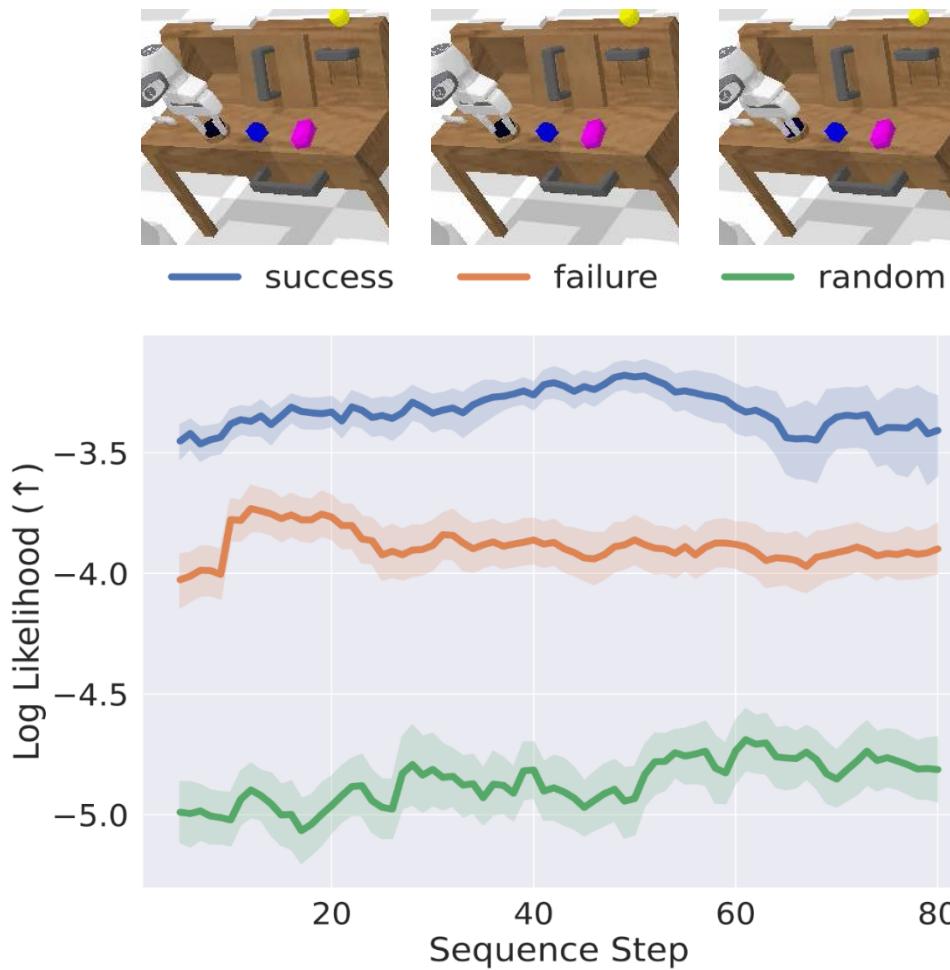
Pre-trained Moto-GPT as a Useful Prior Learner (Q2)

- Visualization of video trajectories generated from a sequence of latent motion tokens, which are predicted by the pre-trained Moto-GPT given different language instructions.



Pre-trained Moto-GPT as a Useful Prior Learner (Q2)

- Moto-GPT distinguishes **successful**, **failed**, and **random** trajectories using log-likelihoods, enabling effective assessment of robot trajectory rationality and potential reward signals.



Fine-tuned Moto-GPT as an Effective Robot Policy (Q3)

- **Performance on SIMPLER**

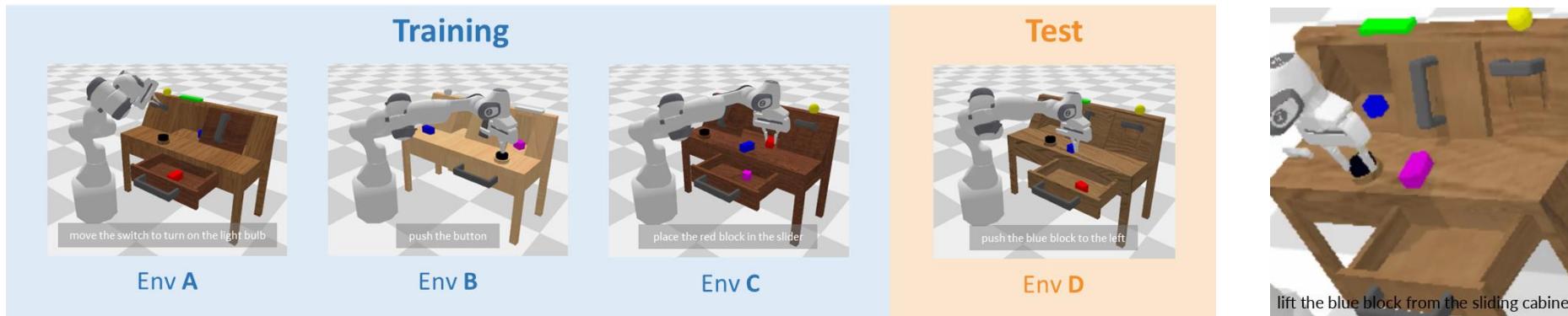
Moto-GPT achieves competitive performance with larger models like RT-2-X (PaLI-X 55B) and OpenVLA (Prismatic 7B), despite having only 98M parameters for the GPT-style backbone.

Method	Pick Coke Can				Move Near	Open / Close Drawer			Overall
	Horizontal	Vertical	Standing	Average		Average	Open	Close	
RT-1-X [4]	0.820	0.330	0.550	0.567	0.317	0.296	0.891	0.597	0.534
RT-2-X [62]	0.740	0.740	<u>0.880</u>	0.787	0.779	0.157	0.343	0.250	<u>0.607</u>
Octo-Base [41]	0.210	0.210	0.090	0.170	0.042	0.009	0.444	0.227	0.169
OpenVLA [27]	0.270	0.030	0.190	0.163	0.462	<u>0.194</u>	0.518	0.356	0.248
OpenVLA (fine-tuned) [27]	0.470	0.080	0.540	0.363	0.542	0.102	0.361	0.231	0.349
Moto	0.820	<u>0.500</u>	0.900	<u>0.740</u>	<u>0.604</u>	0.130	0.732	<u>0.431</u>	0.614
Moto w/o Motion Token	0.600	0.190	0.740	0.503	0.554	0.000	<u>0.796</u>	0.398	0.480

Fine-tuned Moto-GPT as an Effective Robot Policy (Q3)

- **Performance on CALVIN (ABC→D)**

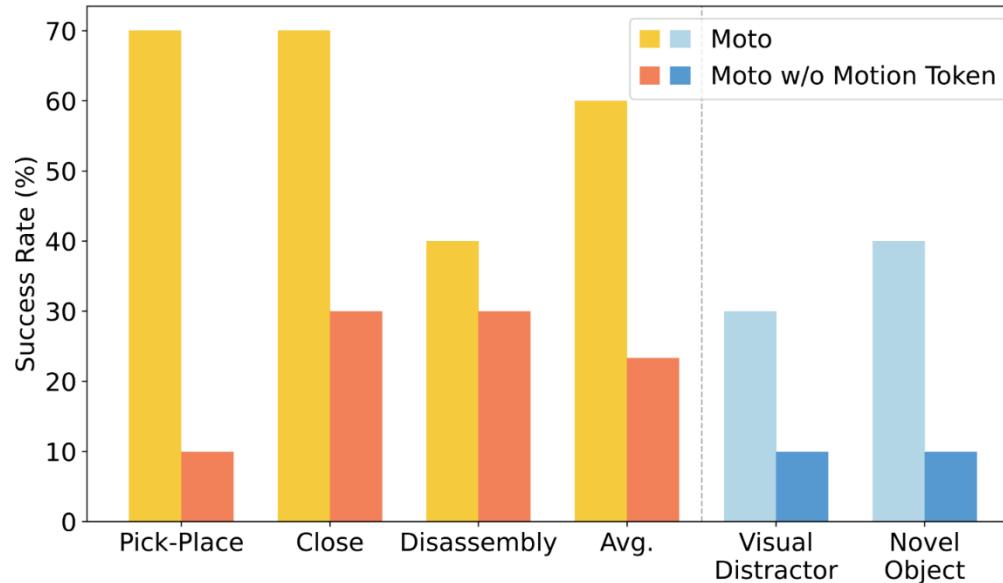
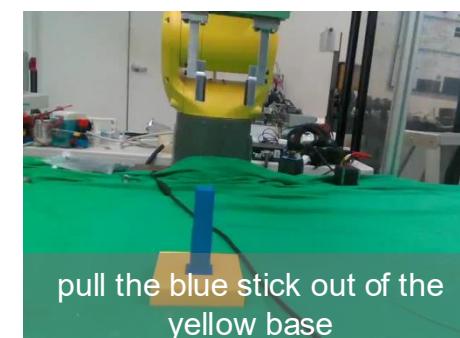
Moto-GPT shows strong zero-shot generalization ability in the unseen CALVIN environment, despite relying solely on RGB images from a static camera.



Model	Observation Space	Tasks competed in a row (1000 chains)					
		1	2	3	4	5	Avg. Len.
SuSIE [2]	Static RGB	0.870	0.690	0.490	0.380	0.260	2.69
RoboFlamingo [28]	Static RGB + Gripper RGB	0.824	0.619	0.466	0.331	0.235	2.47
MT-R3M [49]	Static RGB + Gripper RGB + Proprio	0.529	0.234	0.105	0.043	0.018	0.93
GR-1 [49]	Static RGB + Gripper RGB + Proprio	0.854	0.712	0.596	0.497	0.401	3.06
Moto	Static RGB	0.897	0.729	0.601	0.484	0.386	3.10
Moto w/o Motion Token	Static RGB	0.779	0.555	0.380	0.256	0.167	2.14

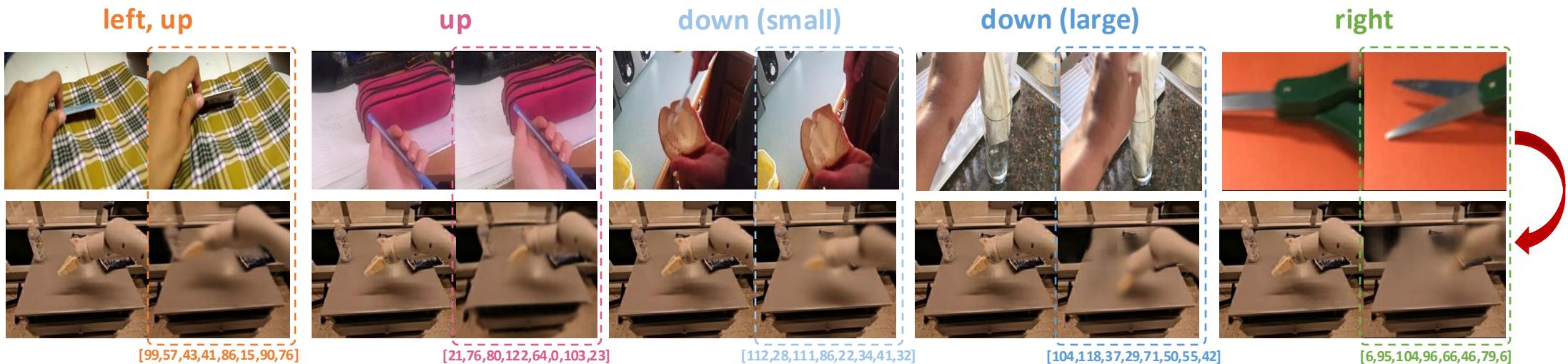
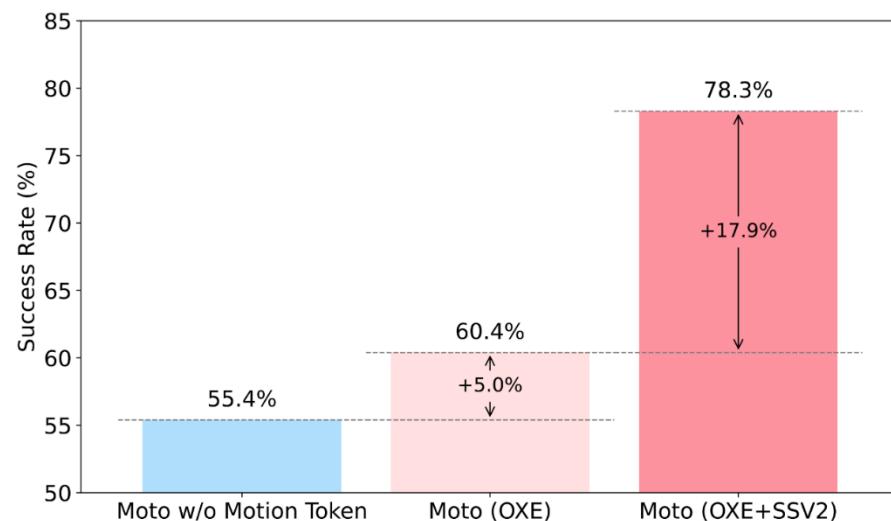
Fine-tuned Moto-GPT as an Effective Robot Policy (Q3)

- **Performance in Real-World Environment**



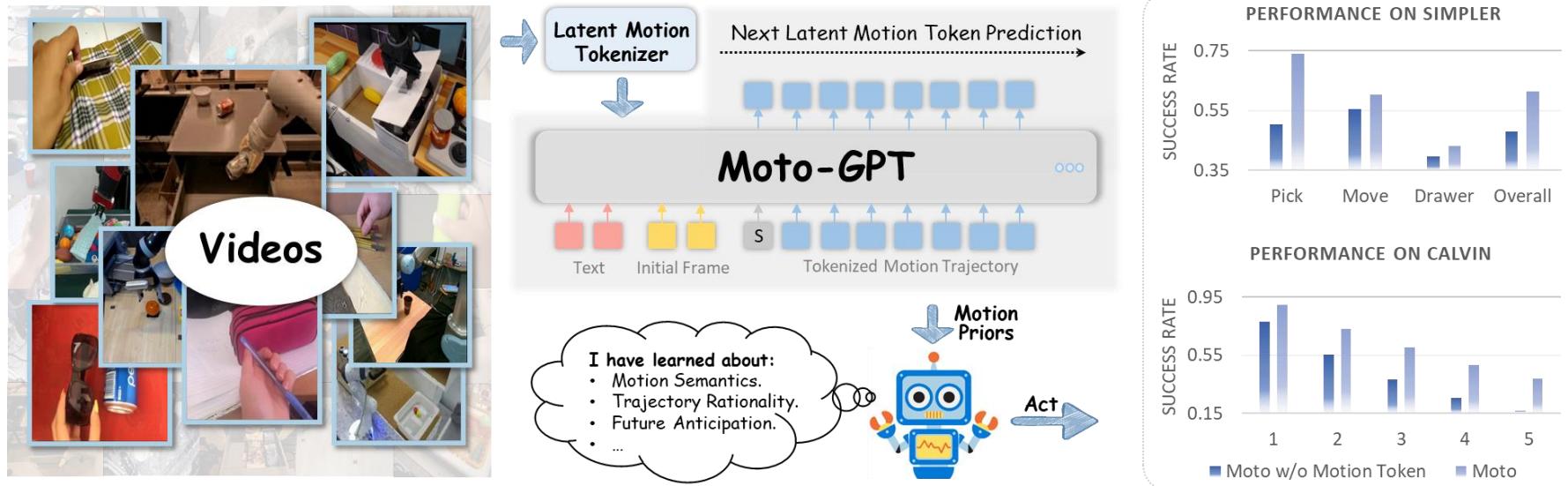
Fine-tuned Moto-GPT as an Effective Robot Policy (Q3)

- Learning from Human Videos



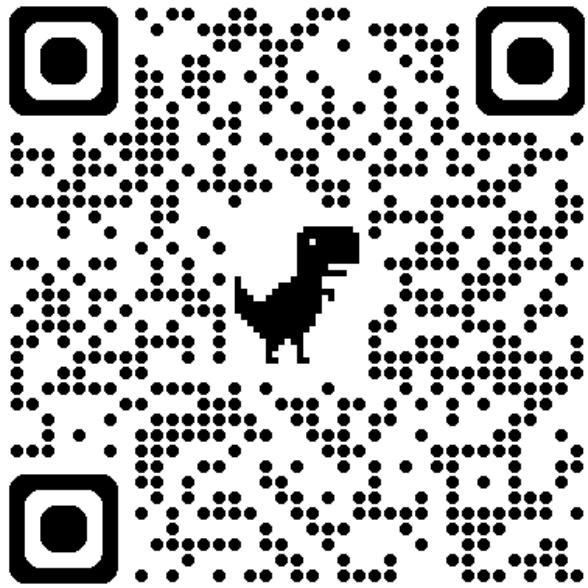
Conclusion

- We present Moto, a novel method that utilizes latent motion tokens as a “language” interface to bridge generative pre-training on video data with precise robot control.
- By learning motion-related priors from videos without the need for hardware-specific action labels, Moto effectively translates learned motions into precise robot actions.



Future Directions

- Learning from large-scale in-the-wild human videos
 - Decoupling camera motion and hand movements.
- Application to more robot embodiments and tasks
 - Dual-arm robots, dexterous manipulation, whole-body control
- Improve the Latent Motion Tokenizer
 - e.g., incorporating 3D information, combining ground-truth action labels
- Retrieval augmented generation / In-context learning with few-shot demonstrations



*See our project page
for more details!*