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Background

• Robot data collection is slow and sparse, with varying action spaces across embodiments. 

Zheng J., et al. Universal actions for enhanced embodied foundation models. In CVPR, 2025.



Background

• Video data is more diverse and scalable, which contains rich motion-related knowledge.

Something-Something-V2 Galaxea Open-World DatasetOpen-X-Embodiment



Motivation

• Large Language Models (LLMs) pre-trained on extensive corpora have shown significant success in 

various natural language processing (NLP) tasks with minimal fine-tuning. 

• This success offers new promise for robotics, which has long been constrained by the high cost of 

action-labeled data. 

• Given the abundant video data containing interaction-related knowledge available as a rich 

“corpus”, can we apply a similar generative pretraining approach to enhance robot learning?  



Motivation

• The key challenge is to identify an effective representation for autoregressive pre-training that benefits 

robot manipulation tasks. 



Motivation

• Inspired by the way humans learn new skills through observing dynamic environments, we propose 

that, we propose that effective robotic learning should emphasize motion-related knowledge, 

which is closely tied to low-level actions and is independent of hardware, facilitating the transfer 

of learned motions to actual robot actions.

latent motion



Motivation

• Genie is the first generative interactive environment trained in an unsupervised manner from 

unlabelled Internet videos using latent actions. 

Bruce, J., et al. Genie: Generative Interactive Environments. In ICML, 2024.



Overview of Moto

• Moto utilizes latent Motion Tokens as a “language” interface to bridge generative pre-training on video 

data with precise robot control.
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Training Procedures of Moto

• Moto consists of three stages: 1) unsupervised training of the Latent Motion Tokenizer, 

2) pre-training of the generative model, and 3) co-fine-tuning for robot policy adaptation.



Stage-1: Latent Motion Tokenizer

• The Latent Motion Tokenizer produces 

discrete latent motion tokens from two 

consecutive video frames. 

• It regularizes the decoder to reconstruct the 

second frame based on the first frame and 

the discrete tokens, capturing essential visual 

motion between frames. 
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Stage-2: Motion Token Autoregressive Pre-training
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Stage-3: Co-fine-tuning for Robot Manipulation
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Experiments
To comprehensively evaluate the effectiveness of Moto, we study three key questions:

• Q1 (Interpretability): Do latent motion tokens represent meaningful visual motions?

• Q2 (Motion Priors): Does Moto-GPT learn useful priors about trajectories?

• Q3 (Performance): Can these priors be effectively transferred to real robot policies?

Q1 (Interpretability) Q2 (Motion Priors) Q3 (Performance)



Latent Motion Token as an Interpretable Motion Language (Q1)

• Visualization of latent motion token interpretability

Initial Frame forward:

[69,35,34,36,108,117,101]

backward:

[61,8,48,90,108,60,39,118]

down:

[62,81,108,20,41,60,19,64]

left, forward:

[68,119,41,60,123,101,39,41]

right, forward:

[34,60,93,25,11,13,72,117]



Latent Motion Token as an Interpretable Motion Language (Q1)

• Video imitation generation via latent motion tokens

Imitation Video

[93,11,86,64,111,16,100,0]

Demonstration VideoInitial Frame A

Initial Frame B

[16,13,111,60,37,25,42,121] [84,103,47,116,113,2,99,55] [71,72,79,36,80,0,70,107] [81,103,54,96,100,92,9,24] [39,112,22,33,60,68,32,62]



Pre-trained Moto-GPT as a Useful Prior Learner (Q2)

• Visualization of video trajectories generated from a sequence of latent motion tokens, which are 

predicted by the pre-trained Moto-GPT given different language instructions.



Pre-trained Moto-GPT as a Useful Prior Learner (Q2)

• Moto-GPT distinguishes successful, failed, and random trajectories using log-likelihoods, enabling 

effective assessment of robot trajectory rationality and potential reward signals.



Fine-tuned Moto-GPT as an Effective Robot Policy (Q3)

• Performance on SIMPLER

Moto-GPT achieves competitive performance with larger models like RT-2-X (PaLI-X 55B) and OpenVLA (Prismatic 

7B), despite having only 98M parameters for the GPT-style backbone. 



Fine-tuned Moto-GPT as an Effective Robot Policy (Q3)

• Performance on CALVIN (ABC→D)

Moto-GPT shows strong zero-shot generalization ability in the unseen CALVIN environment, despite relying solely 

on RGB images from a static camera. 



Fine-tuned Moto-GPT as an Effective Robot Policy (Q3)

• Performance in Real-World Environment

place the banana into the pan close the laptop
pull the blue stick out of the 

yellow base



Fine-tuned Moto-GPT as an Effective Robot Policy (Q3)

• Learning from Human Videos

down (small)left, up up down (large) right

[99,57,43,41,86,15,90,76] [21,76,80,122,64,0,103,23] [112,28,111,86,22,34,41,32] [104,118,37,29,71,50,55,42] [6,95,104,96,66,46,79,6]



Conclusion

• We present Moto, a novel method that utilizes latent motion tokens as a “language” interface to 

bridge generative pre-training on video data with precise robot control. 

• By learning motion-related priors from videos without the need for hardware-specific action labels, 

Moto effectively translates learned motions into precise robot actions. 



Future Directions

• Learning from large-scale in-the-wild human videos

• Decoupling camera motion and hand movements.

• Application to more robot embodiments and tasks

• Dual-arm robots, dexterous manipulation, whole-body control

• Improve the Latent Motion Tokenizer

• e.g., incorporating 3D information, combining ground-truth action labels

• Retrieval augmented generation / In-context learning with few-shot demonstrations



See our project page 

for more details!
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