

Diffusion Image Prior

Hamadi Chihaoui, Paolo Favaro

Computer Vision Group, University of Bern, Switzerland

Image Restoration

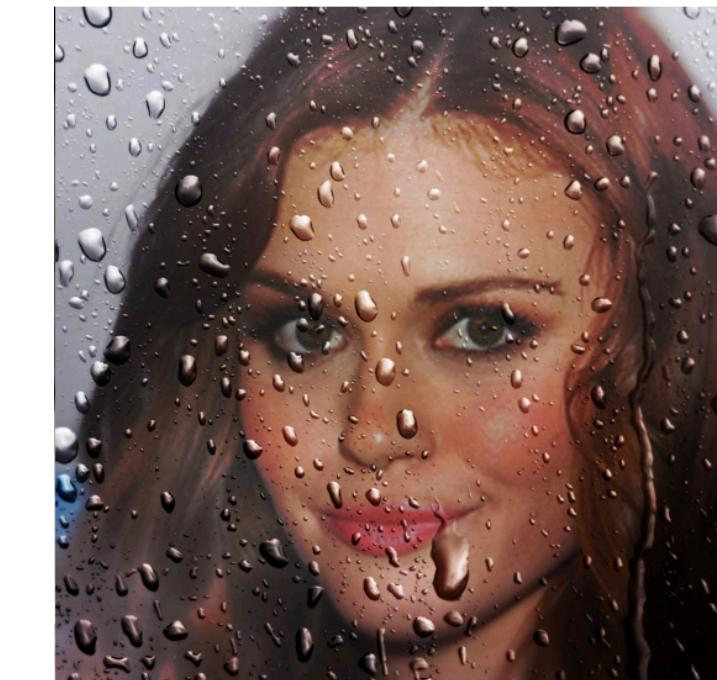
- Structured Degradations
 - Fully Known or Modeled Operators
 - Examples: Gaussian deblurring, super-resolution..

Gaussian blur

Low resolution

Heavily explored

- Unstructured Degradations
 - Complex or Unknown operators
 - Examples: Water drop, non-uniform deformation..



Water drop

Non-uniform deformation

Rarely explored

Tackling Unstructured Degradation

- Supervised methods
 - need an annotated dataset which is hard to collect
- Training-based methods
 - Rely on a dataset and usually fail to generalize on new degradation patterns
- Unsupervised methods
 - Degradation operator fully known
- Training-free methods
 - Applied directly to the input, no generalization problem.

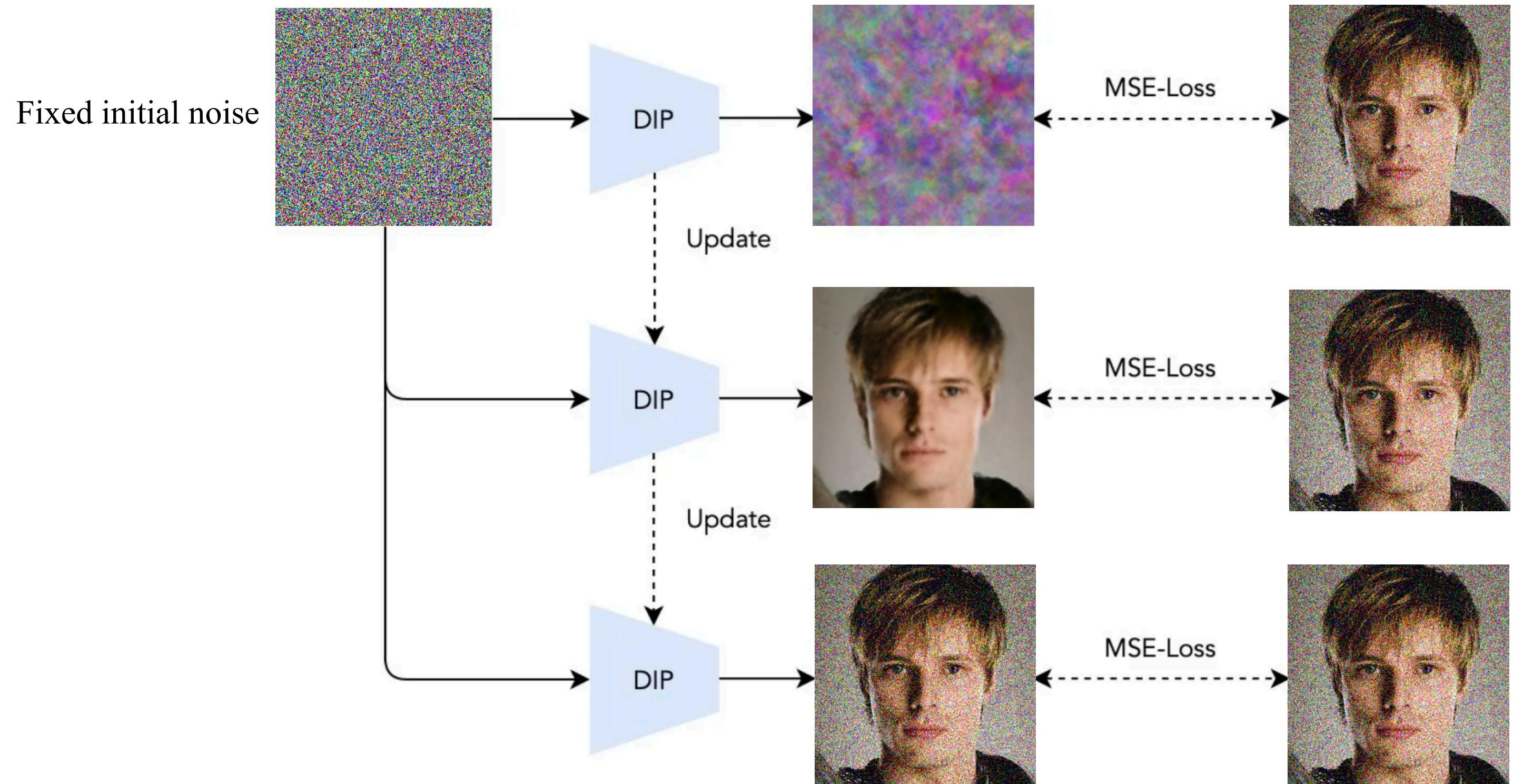
Approach

We introduce a new image restoration method that:

1. does not assume any prior knowledge of the degradation model.
2. is fully unsupervised.
3. is training-free (leverages a pre-trained model).
4. shows higher fidelity to the input compared to existing methods.

Inspiration and Motivation

Deep Image Prior (DIP) [Ulyanov et al. CVPR 2018]



Visual illustration of Deep Image Prior (DIP)

Deep Image Prior (DIP)

- DIP optimization:

$$\theta^* = \arg \min_{\theta} \|f_{\theta}(z) - y\|^2 \quad (1)$$

$$\hat{x} = f_{\theta^*}(z)$$

where y is the input image, f_{θ} is an untrained CNN, and z is an initial noise.

- However, an untrained deep CNN is a too weak prior.
- What about using a stronger prior?

Diffusion Image Prior (DIIP)

Proposed optimization:

$$z^* = \arg \min_z \|g(z) - y\|^2 \quad (2)$$

$$\hat{x} = g(z^*)$$

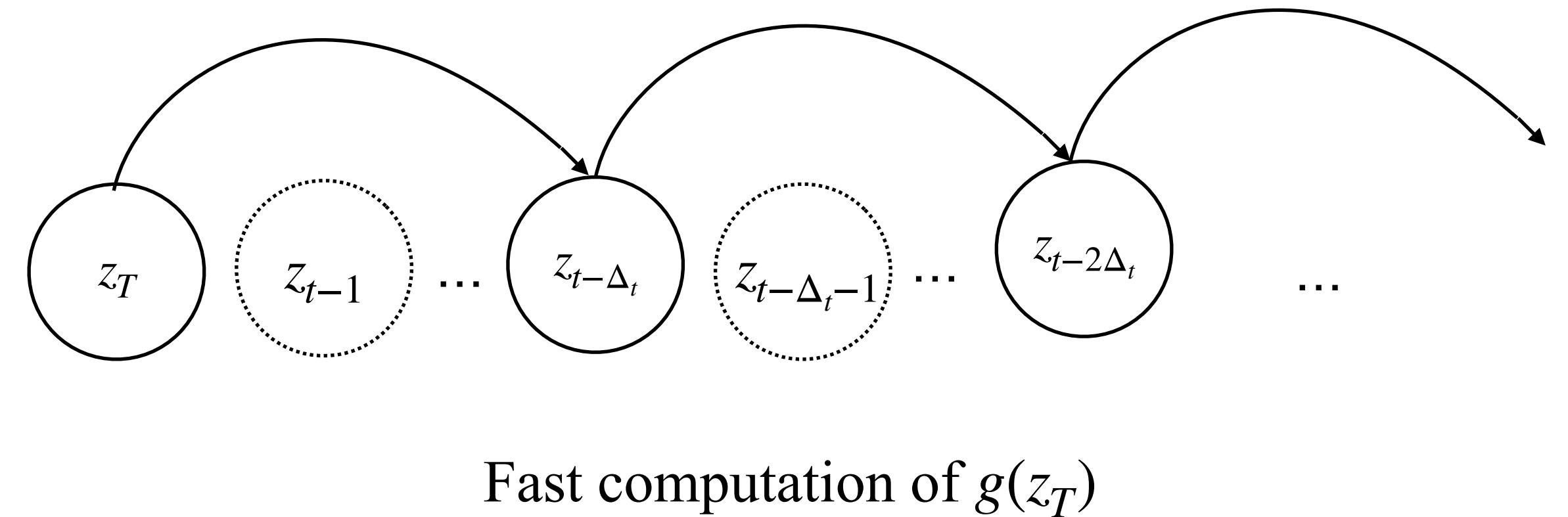
where y is the input image, g is a pre-trained diffusion model, and z is noise.

Algorithm 1 Iterative Solver of Eq (2)

Require: Degraded image y , pre-trained diffusion g , learning rate α .

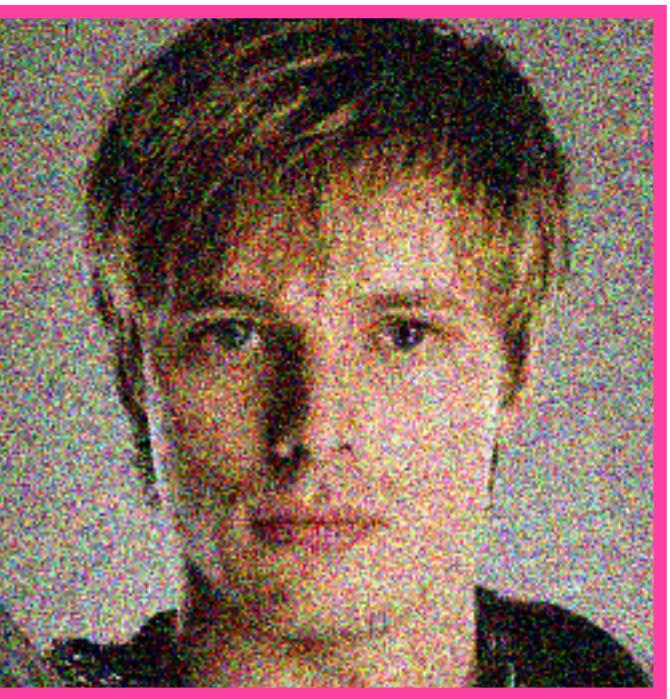
Ensure: Return \hat{x}_0

- 1: Initialize $z_T^0 \sim \mathcal{N}(0, \mathbf{I})$
- 2: **for** $k : 1 \rightarrow N - 1$ **do**
- 3: $x_0^k = g(z_T^k)$
- 4: $z_T^{k+1} = z_T^k - \alpha \nabla_{x_T} \|x_0^k - y\|^2$
- 5: **end for**
- 6: **return** $\hat{x}_0 = g(z_T^N)$



Empirical Study

- Empirical study on synthetic data.
- *Assumption: any degradation either:*
 - *removes some high frequency details.*
 - *adds some high frequency artifacts.*



- Test DIP and our proposed optimization on **blurry** images and **noisy** ones.

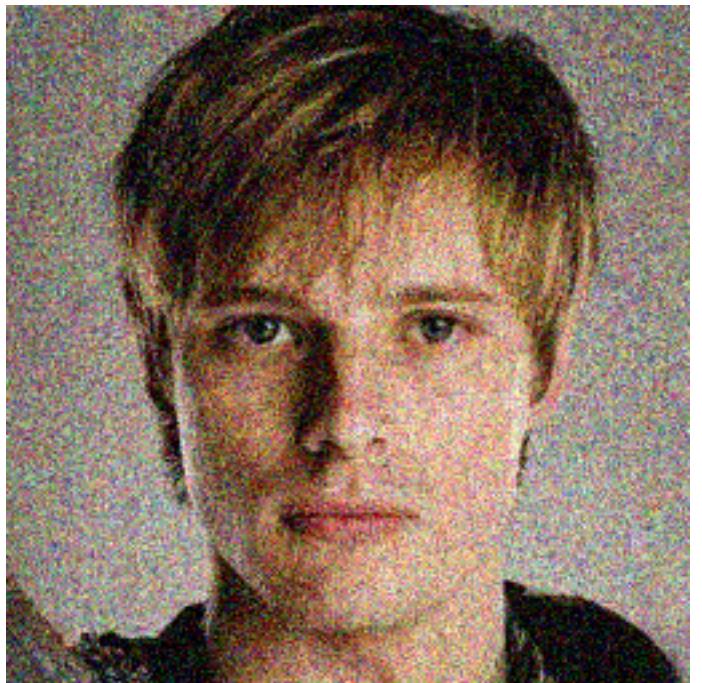
Case of Noise

DIP

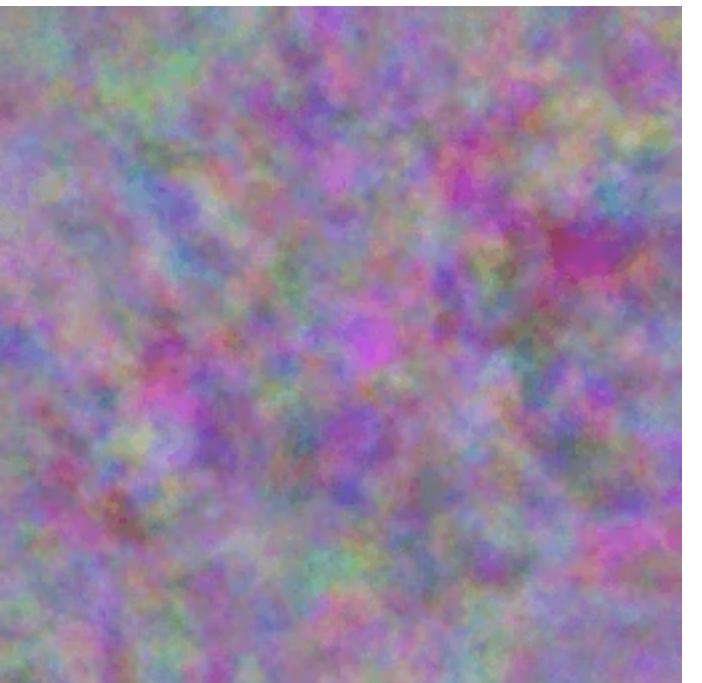
$$\theta^* = \arg \min_{\theta} \|f_{\theta}(z) - y\|^2 \quad (1)$$

$$\hat{x} = f_{\theta^*}(z)$$

Ground-truth



Input



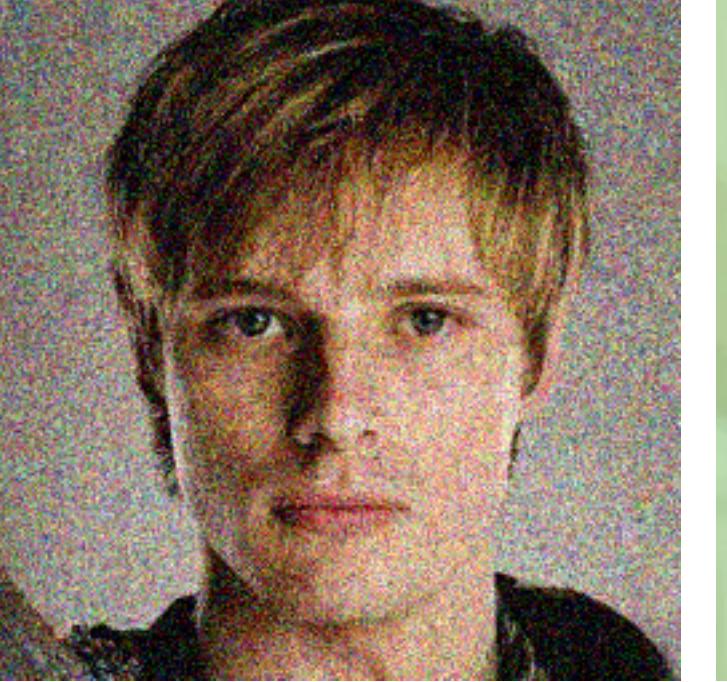
\hat{x}

DIIP

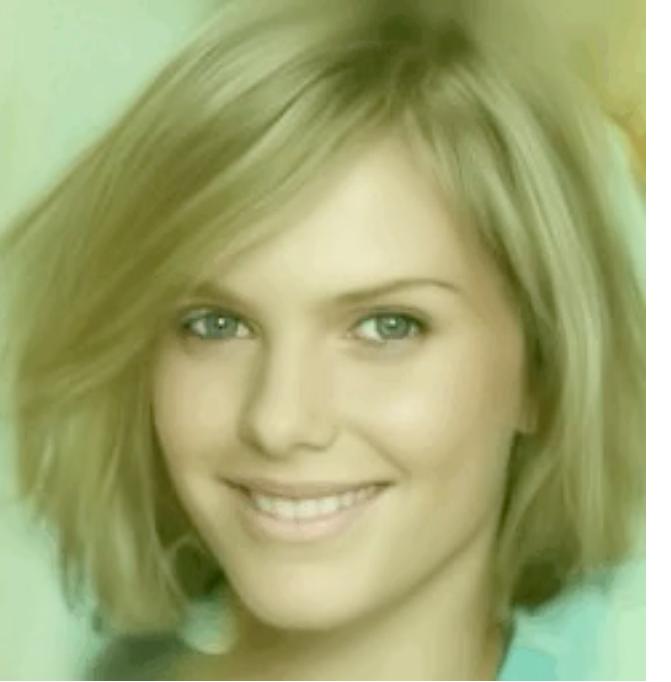
$$z^* = \arg \min_z \|g(z) - y\|^2 \quad (2)$$

$$\hat{x} = g(z^*)$$

Ground-truth



Input



\hat{x}

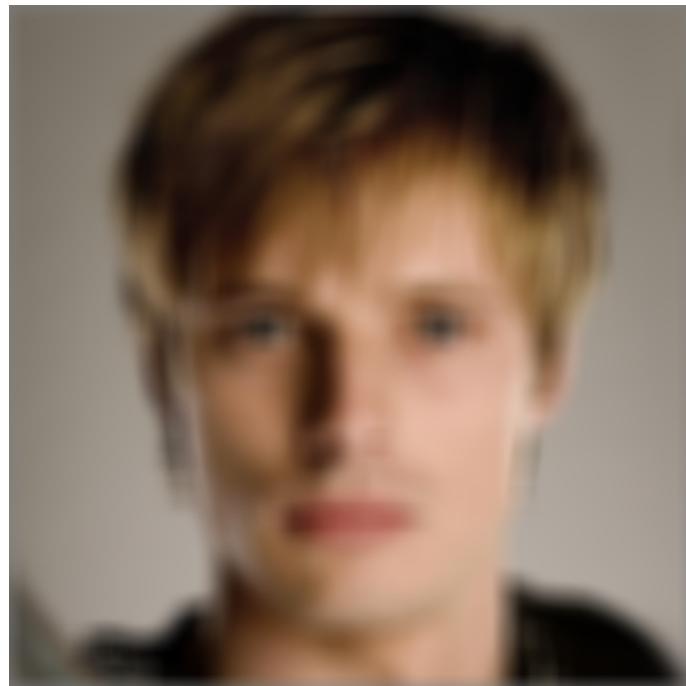
Case of Blur

DIP

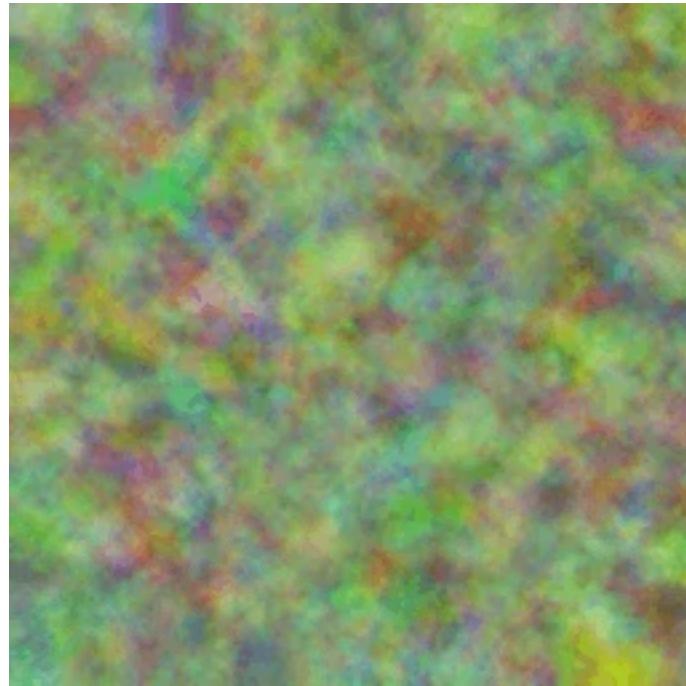
$$\theta^* = \arg \min_{\theta} \|f_{\theta}(z) - y\|^2 \quad (1)$$

$$\hat{x} = f_{\theta^*}(z)$$

Ground-truth



Input

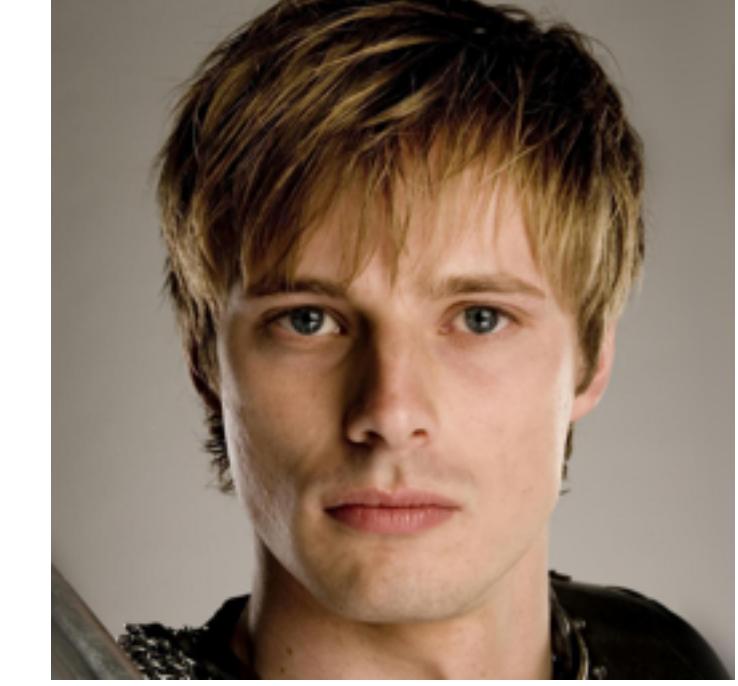


\hat{x}

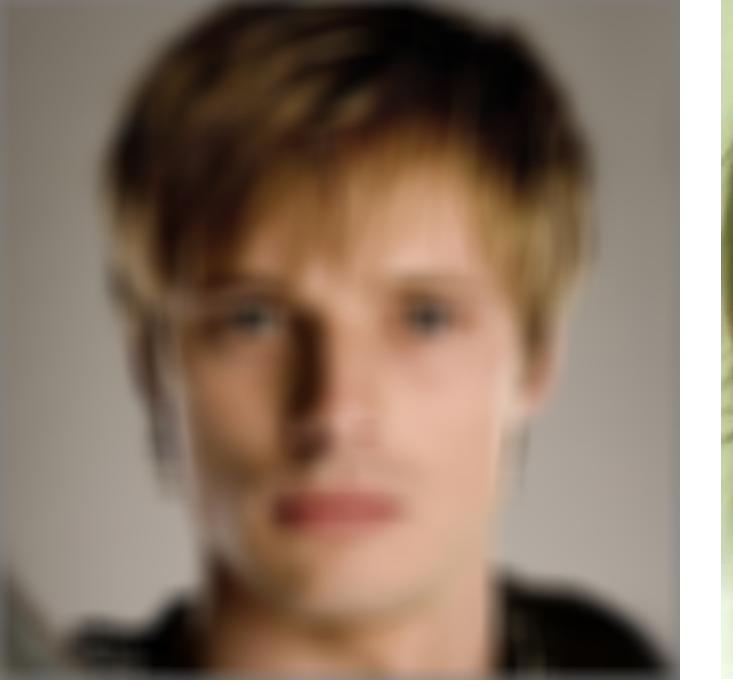
DIIP

$$z^* = \arg \min_z \|g(z) - y\|^2 \quad (2)$$

$$\hat{x} = g(z^*)$$



Ground-truth

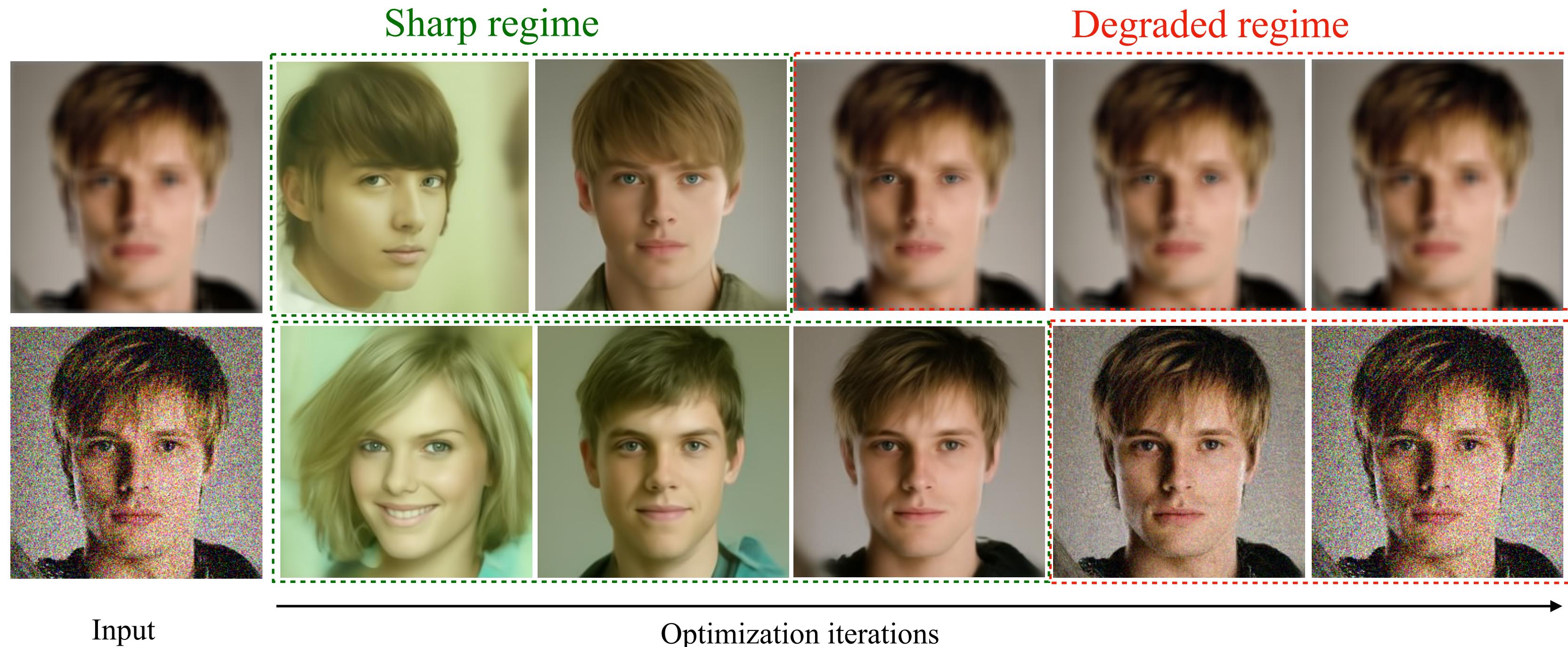


Input

\hat{x}

Two Key Findings

1. Two regimes regardless of the degradation type.



2. Higher resistance to high-frequency artifacts (noise) than to low-frequency distortions (blur).

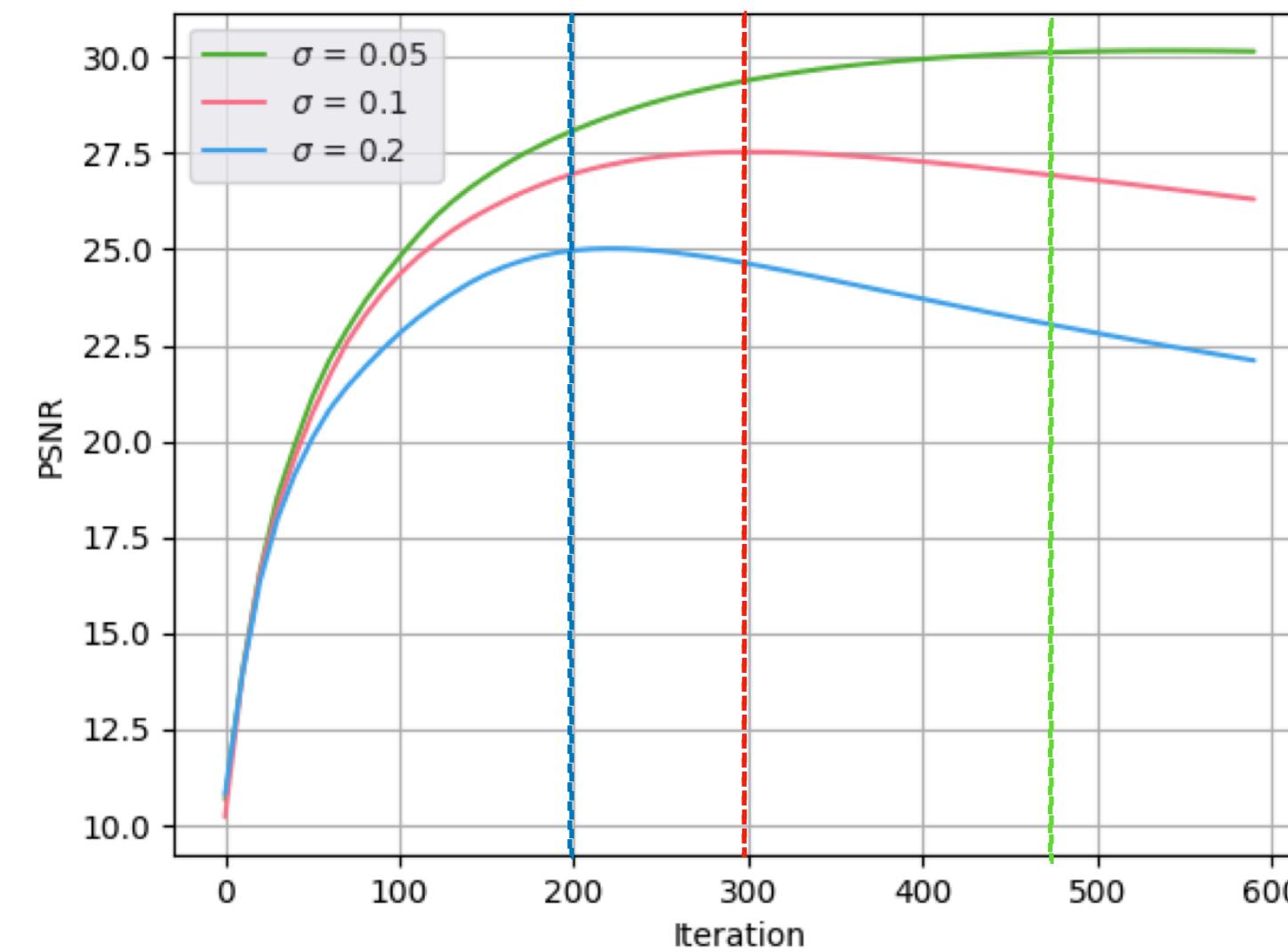
When to Stop the Optimization?

Can we stop our proposed optimization when reaching the optimal reconstruction?

- Early stopping (similar to DIP)
- We propose a self-supervised stopping criterion based on slope of the loss function and the Laplacian of the reconstructed image

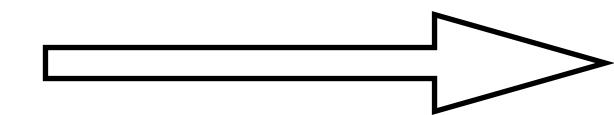
When to Stop the Optimization?

Degradations adding high-frequency artifacts



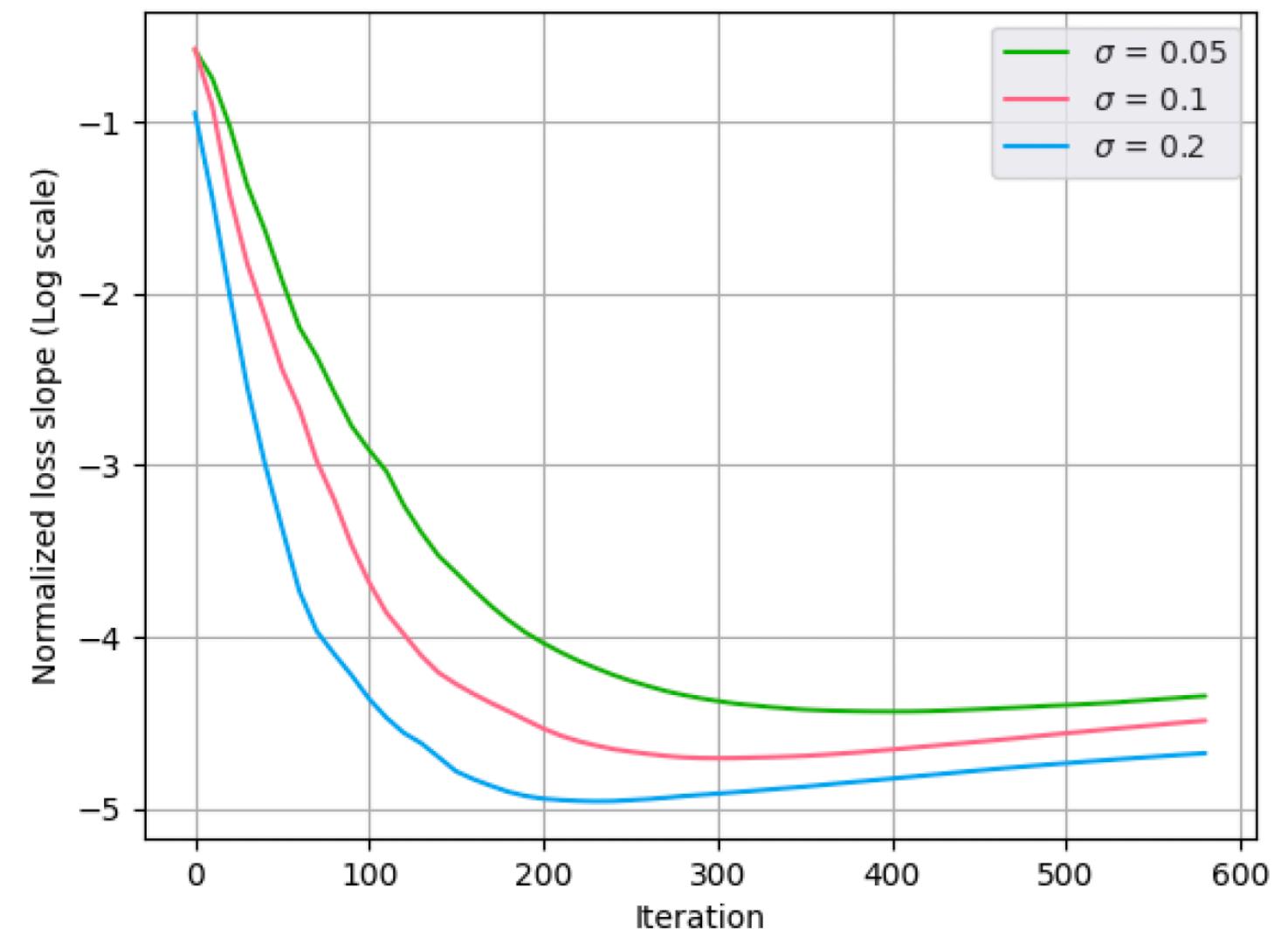
PSNR (w.r.t. ground truth) at different noise levels vs. Iterations

(a) The **noisier** an image is, the **faster** it reaches the optimal reconstruction.



Stop the optimization at iteration k if : $\Delta_k < \epsilon$

$$\text{Normalized loss slope: } \Delta_k = \frac{\|g(z_k) - y\|^2 - \|g(z_{k+1}) - y\|^2}{\|g(z_k) - y\|^2}$$



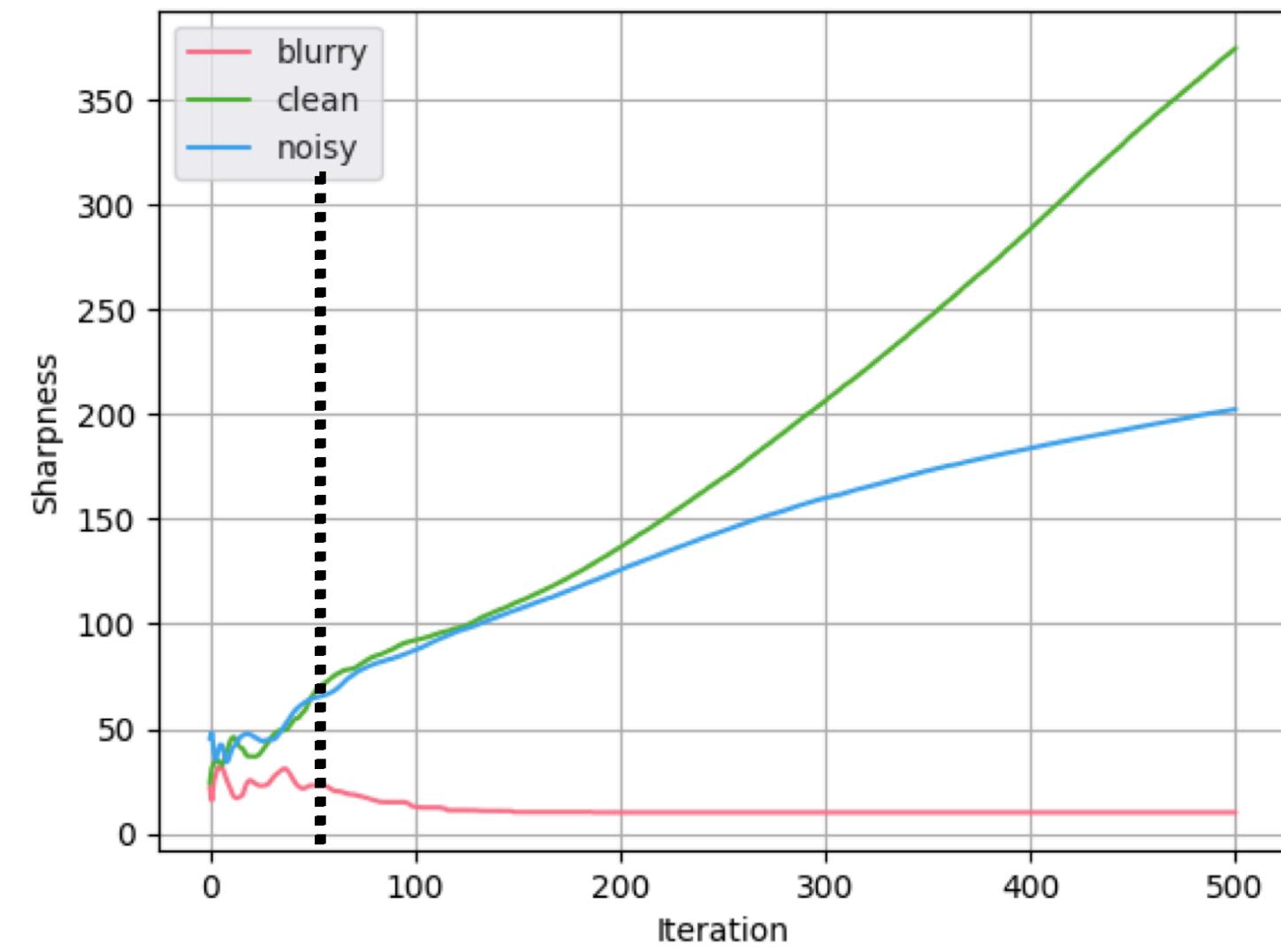
Normalized loss slope Δ_k vs. iterations

(b) The **noisier** the image, the **faster** its normalized loss slope drops.

When to Stop the Optimization?

Degradations removing high-frequency details

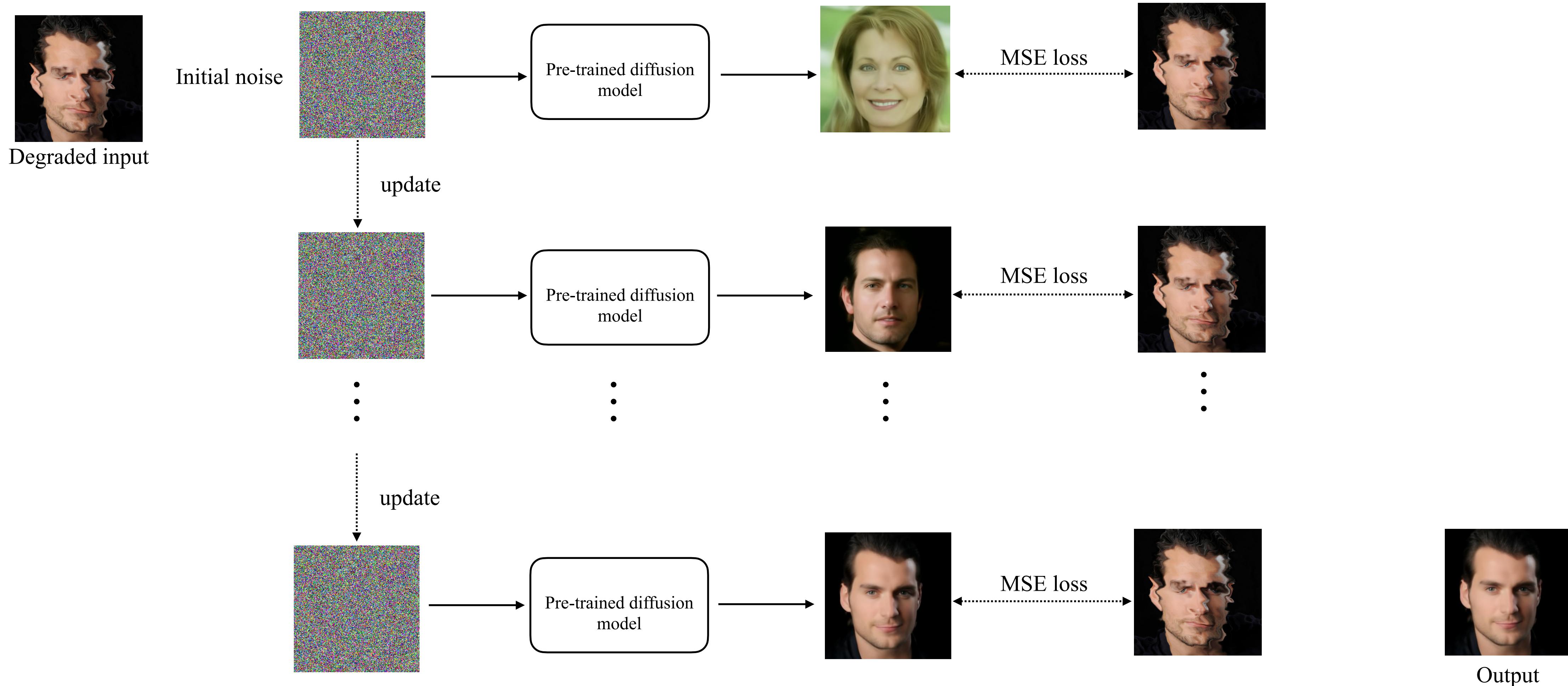
- The variance of the Laplacian σ_k^2 is a robust measure of image sharpness. MAPS [Chao et al. BMC bioinformatics 2021]



Variance of the Laplacian of reconstructions vs. Iterations

→ Stop the optimization at iteration k if: $k > k_{min}$ and $\sigma_k^2 > \sigma_{k+1}^2$

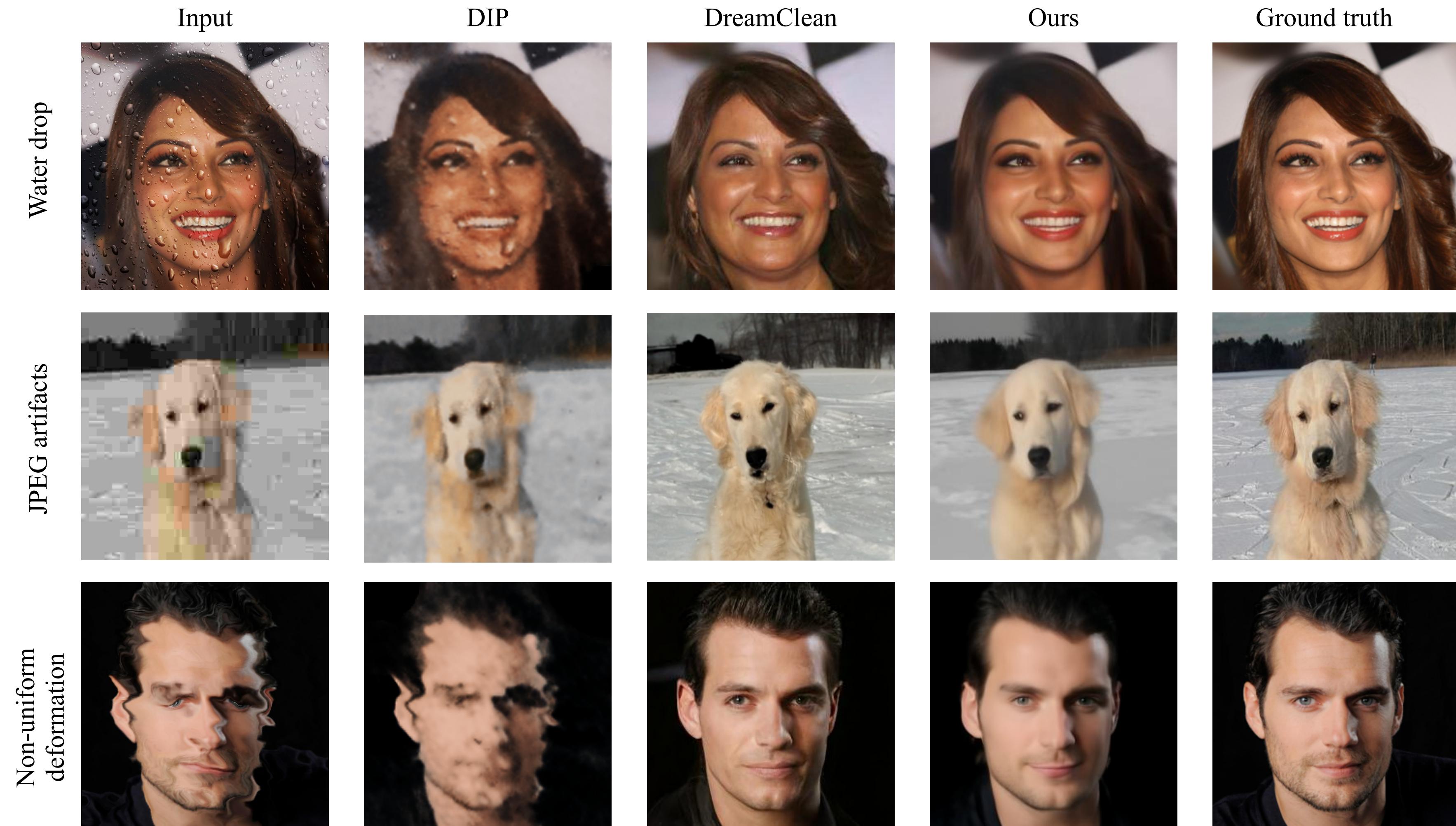
Diffusion Image Prior (DIIP)



Experiments

- Unstructured degradations
 - water drop
 - non-uniform deformation
 - JPEG artifacts
- Structured degradations
 - Denoising
 - Super resolution

Visual Results - Unstructured Degradations



Visual Results - Structured Degradations

Quantitative Results

- Unstructured degradations

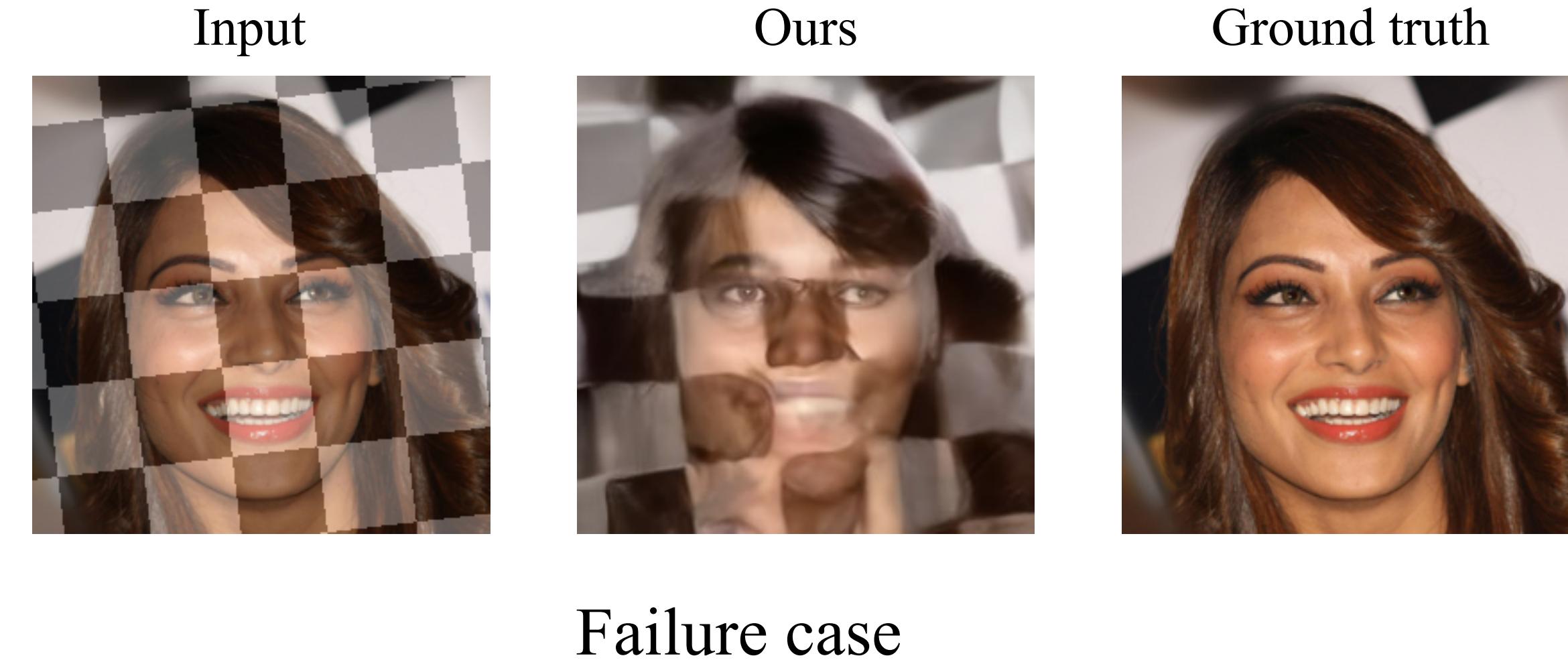
Method	JPEG De-artifacting			Non-uniform Deformation			Water-drop Removal		
	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓
DIP [16]	20.43	0.593	0.622	18.83	0.437	0.643	20.37	0.517	0.642
DreamClean [19]	23.92	0.691	0.342	22.16	0.612	0.398	22.94	0.643	0.361
Ours	25.29	0.783	0.325	23.45	0.689	0.392	23.78	0.702	0.377

- Structured degradations

Method	Denoising			Superresolution (×4)			Superresolution (×8)		
	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓
GDP [8]	27.73	0.817	0.232	24.21	0.708	0.337	21.66	0.618	0.374
Gibbsddrm [13]	27.38	0.809	0.255	24.38	0.689	0.330	21.45	0.605	0.364
BIRD [2]	27.92	0.821	0.238	25.26	0.751	0.294	22.63	0.626	0.352
BlindDPS [5]	27.56	0.813	0.246	24.51	0.722	0.324	21.73	0.620	0.360
DIP [16]	25.81	0.606	0.345	21.33	0.566	0.426	20.34	0.488	0.471
DreamClean [16]	27.05	0.771	0.236	23.44	0.663	0.322	21.33	0.586	0.344
Ours	28.37	0.842	0.224	25.14	0.764	0.301	22.86	0.651	0.336

Limitations

- Our stopping criteria are still non-optimal.



- Over-smoothed outputs especially in some case of blurry input images.
- Investigating further self-supervised criteria is a promising research direction.

Summary

- We show the implicit prior of a frozen pre-trained diffusion model when used for degraded image reconstruction.
- We propose a new training-free and fully blind image restoration method, DIIP, which does not assume any prior knowledge of the degradation model.
- We demonstrate state-of-the-art performance on several unstructured degradation tasks.

Diffusion Image Prior

Hamadi Chihaoui, Paolo Favaro

Computer Vision Group, University of Bern, Switzerland

