

# Diffusion Image Prior

Hamadi Chihaoui, Paolo Favaro

Computer Vision Group, University of Bern, Switzerland

# Image Restoration

- Structured Degradations
  - Fully Known or Modeled Operators
  - Examples: Gaussian deblurring, super-resolution..



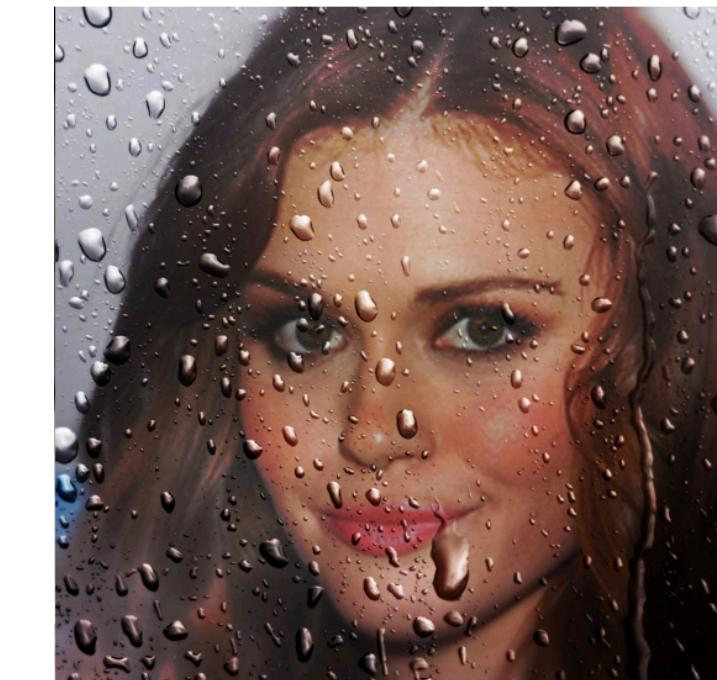
Gaussian blur



Low resolution

Heavily explored

- Unstructured Degradations
  - Complex or Unknown operators
  - Examples: Water drop, non-uniform deformation..



Water drop



Non-uniform deformation

Rarely explored

# Tackling Unstructured Degradation

- Supervised methods
  - need an annotated dataset which is hard to collect
- Training-based methods
  - Rely on a dataset and usually fail to generalize on new degradation patterns
- Unsupervised methods
  - Degradation operator fully known
- Training-free methods
  - Applied directly to the input, no generalization problem.

# Approach

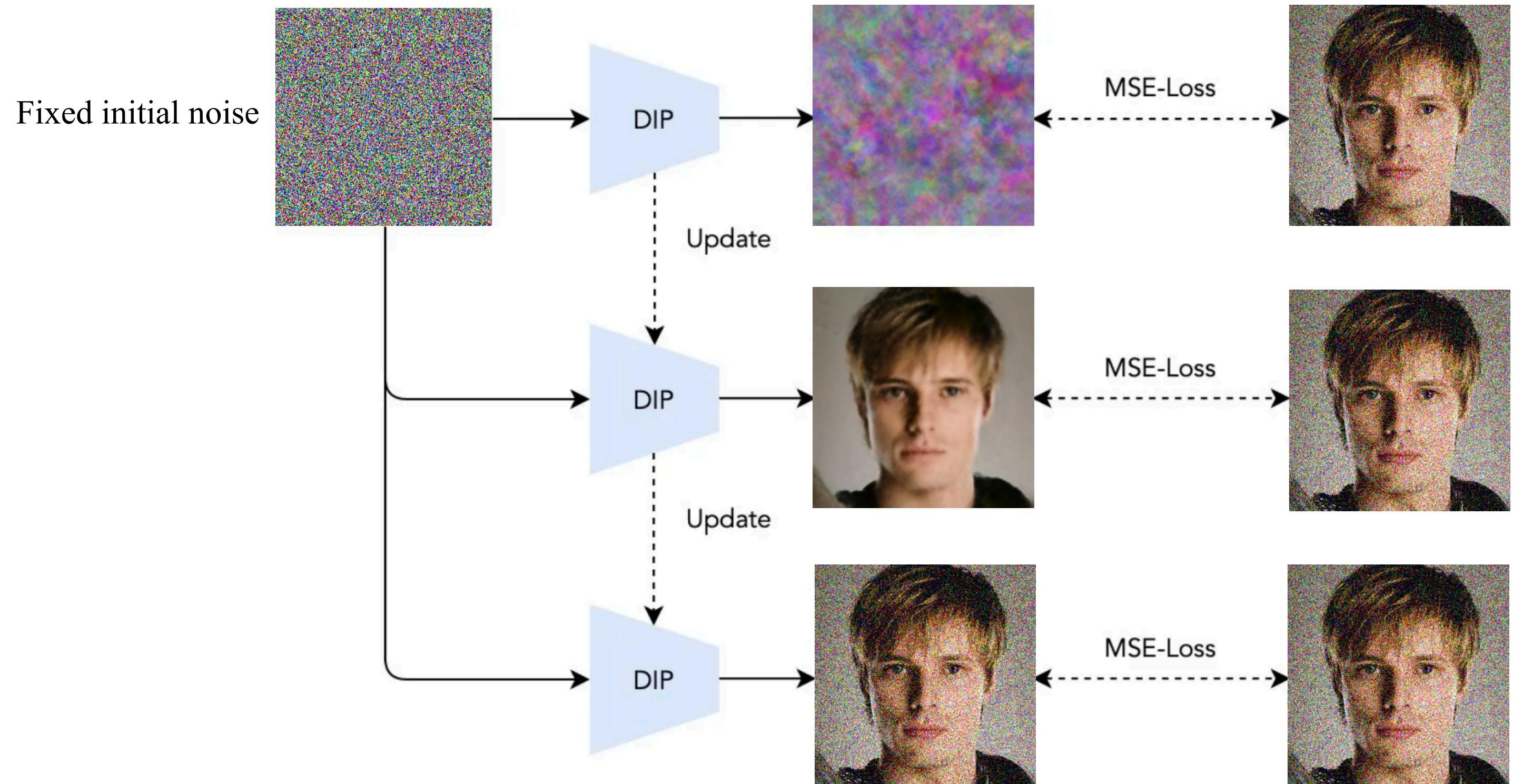
We introduce a new image restoration method that:

1. does not assume any prior knowledge of the degradation model.
2. is fully unsupervised.
3. is training-free (leverages a pre-trained model).
4. shows higher fidelity to the input compared to existing methods.



# Inspiration and Motivation

Deep Image Prior (DIP) [Ulyanov et al. CVPR 2018]



Visual illustration of Deep Image Prior (DIP)

# Deep Image Prior (DIP)

- DIP optimization:

$$\theta^* = \arg \min_{\theta} \|f_{\theta}(z) - y\|^2 \quad (1)$$

$$\hat{x} = f_{\theta^*}(z)$$

where  $y$  is the input image,  $f_{\theta}$  is an untrained CNN, and  $z$  is an initial noise.

- However, an untrained deep CNN is a too weak prior.
- What about using a stronger prior?

# Diffusion Image Prior (DIIP)

Proposed optimization:

$$z^* = \arg \min_z \|g(z) - y\|^2 \quad (2)$$

$$\hat{x} = g(z^*)$$

where  $y$  is the input image,  $g$  is a pre-trained diffusion model, and  $z$  is noise.

---

## Algorithm 1 Iterative Solver of Eq (2)

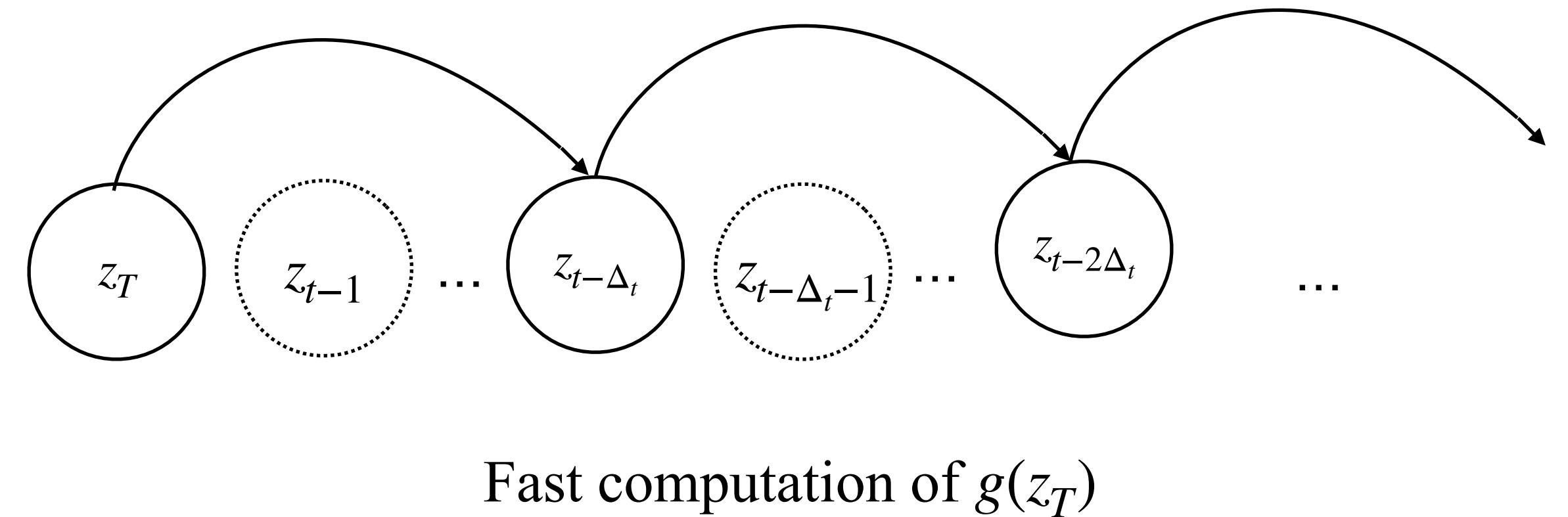
---

**Require:** Degraded image  $y$ , pre-trained diffusion  $g$ , learning rate  $\alpha$ .

**Ensure:** Return  $\hat{x}_0$

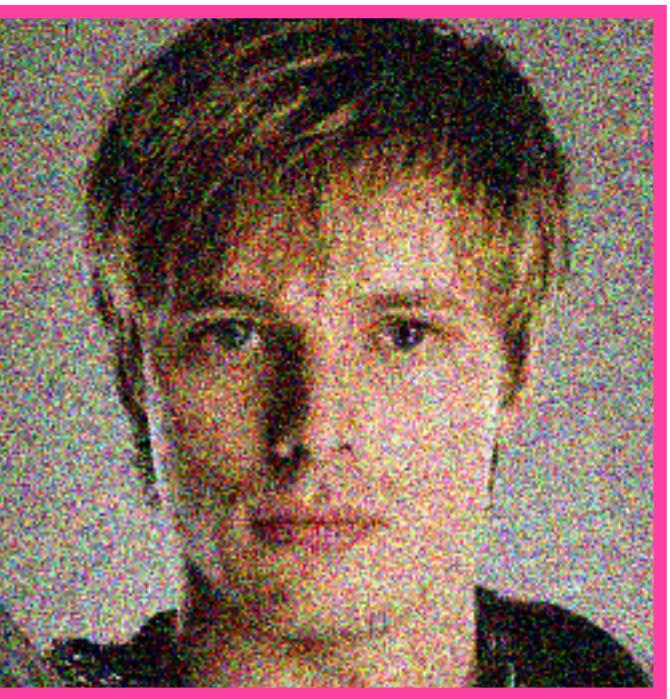
- 1: Initialize  $z_T^0 \sim \mathcal{N}(0, \mathbf{I})$
- 2: **for**  $k : 1 \rightarrow N - 1$  **do**
- 3:    $x_0^k = g(z_T^k)$
- 4:    $z_T^{k+1} = z_T^k - \alpha \nabla_{x_T} \|x_0^k - y\|^2$
- 5: **end for**
- 6: **return**  $\hat{x}_0 = g(z_T^N)$

---



# Empirical Study

- Empirical study on synthetic data.
- *Assumption: any degradation either:*
  - *removes some high frequency details.*
  - *adds some high frequency artifacts.*



- Test DIP and our proposed optimization on **blurry** images and **noisy** ones.

# Case of Noise

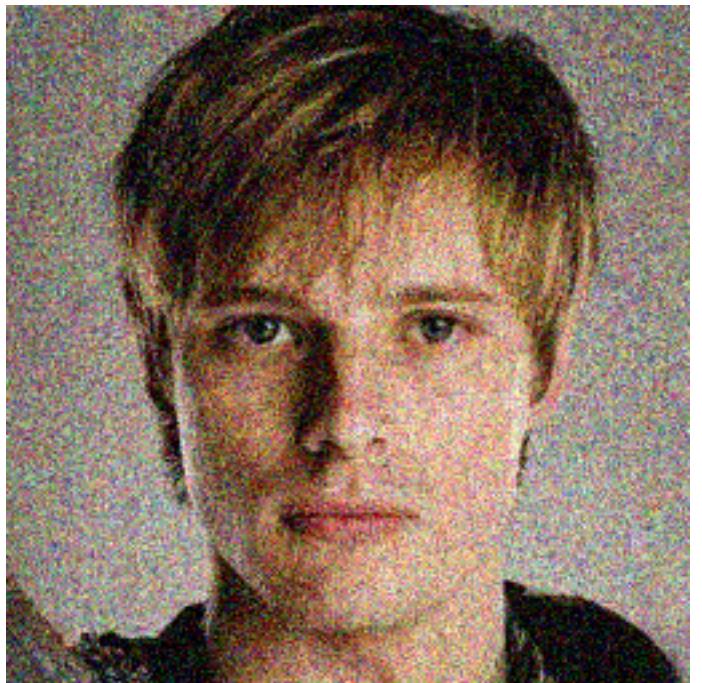
DIP

$$\theta^* = \arg \min_{\theta} \|f_{\theta}(z) - y\|^2 \quad (1)$$

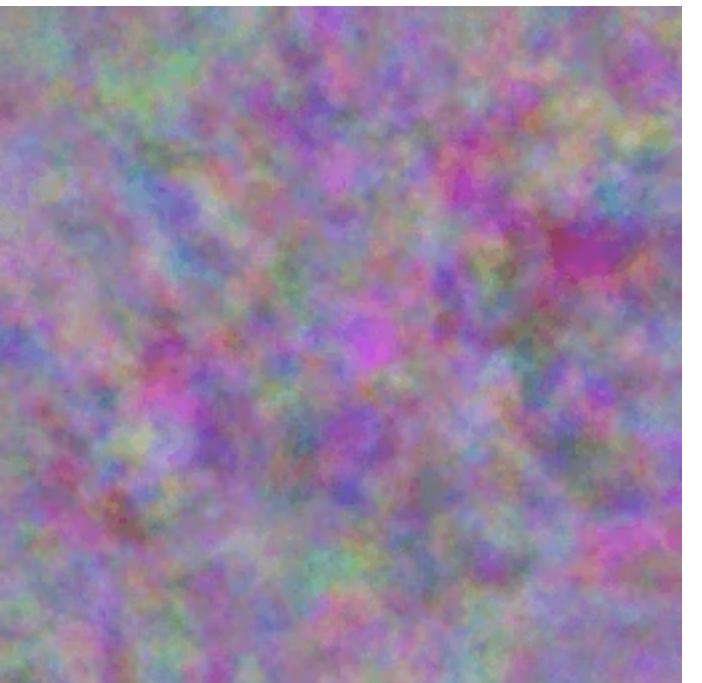
$$\hat{x} = f_{\theta^*}(z)$$



Ground-truth



Input



$\hat{x}$

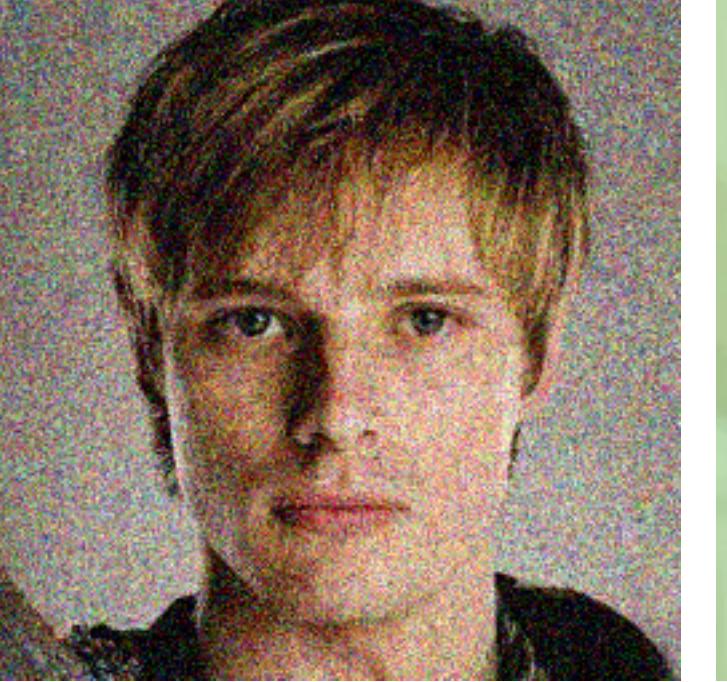
DIIP

$$z^* = \arg \min_z \|g(z) - y\|^2 \quad (2)$$

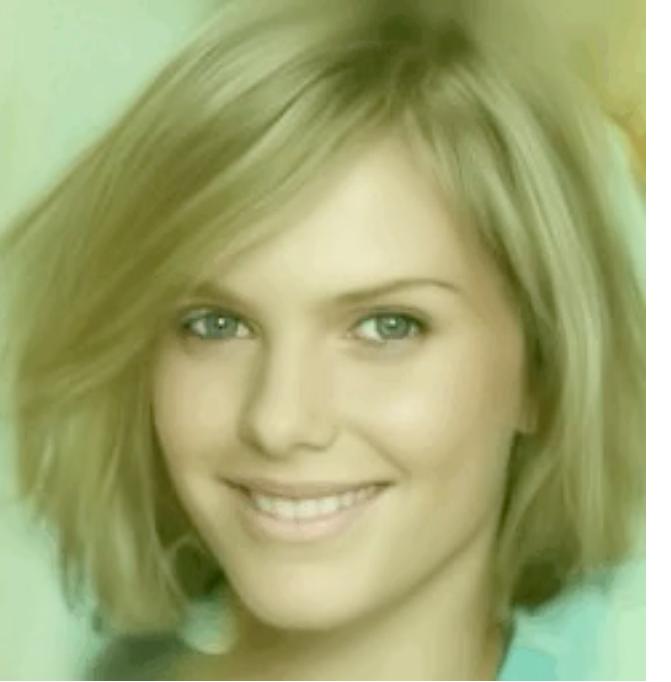
$$\hat{x} = g(z^*)$$



Ground-truth



Input



$\hat{x}$

# Case of Blur

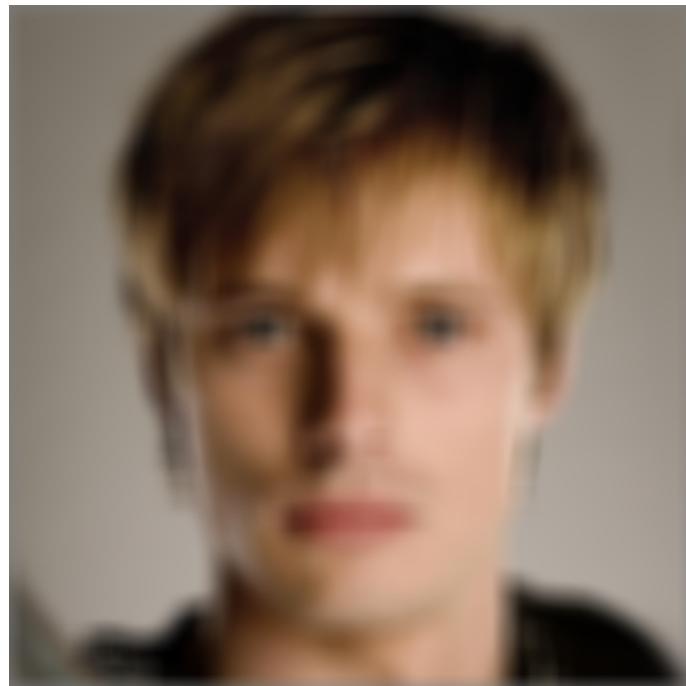
DIP

$$\theta^* = \arg \min_{\theta} \|f_{\theta}(z) - y\|^2 \quad (1)$$

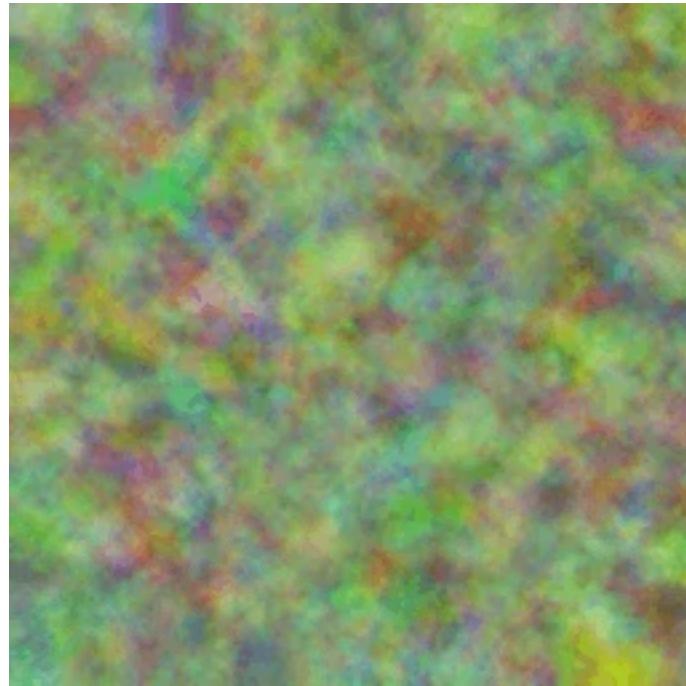
$$\hat{x} = f_{\theta^*}(z)$$



Ground-truth



Input

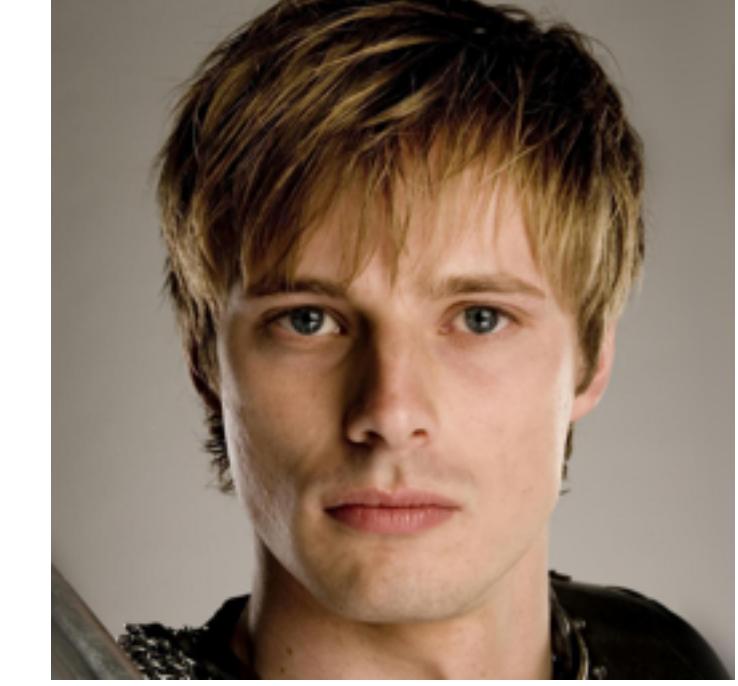


$\hat{x}$

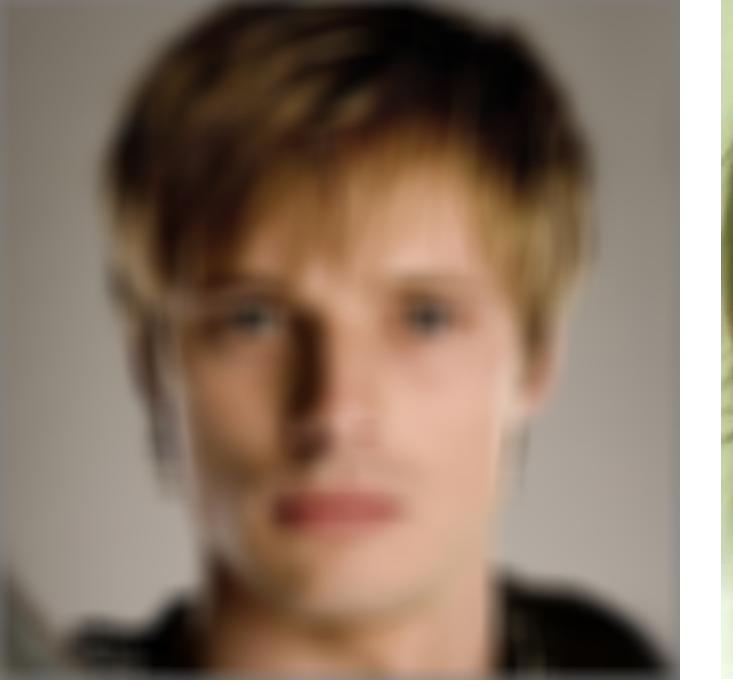
DIIP

$$z^* = \arg \min_z \|g(z) - y\|^2 \quad (2)$$

$$\hat{x} = g(z^*)$$



Ground-truth



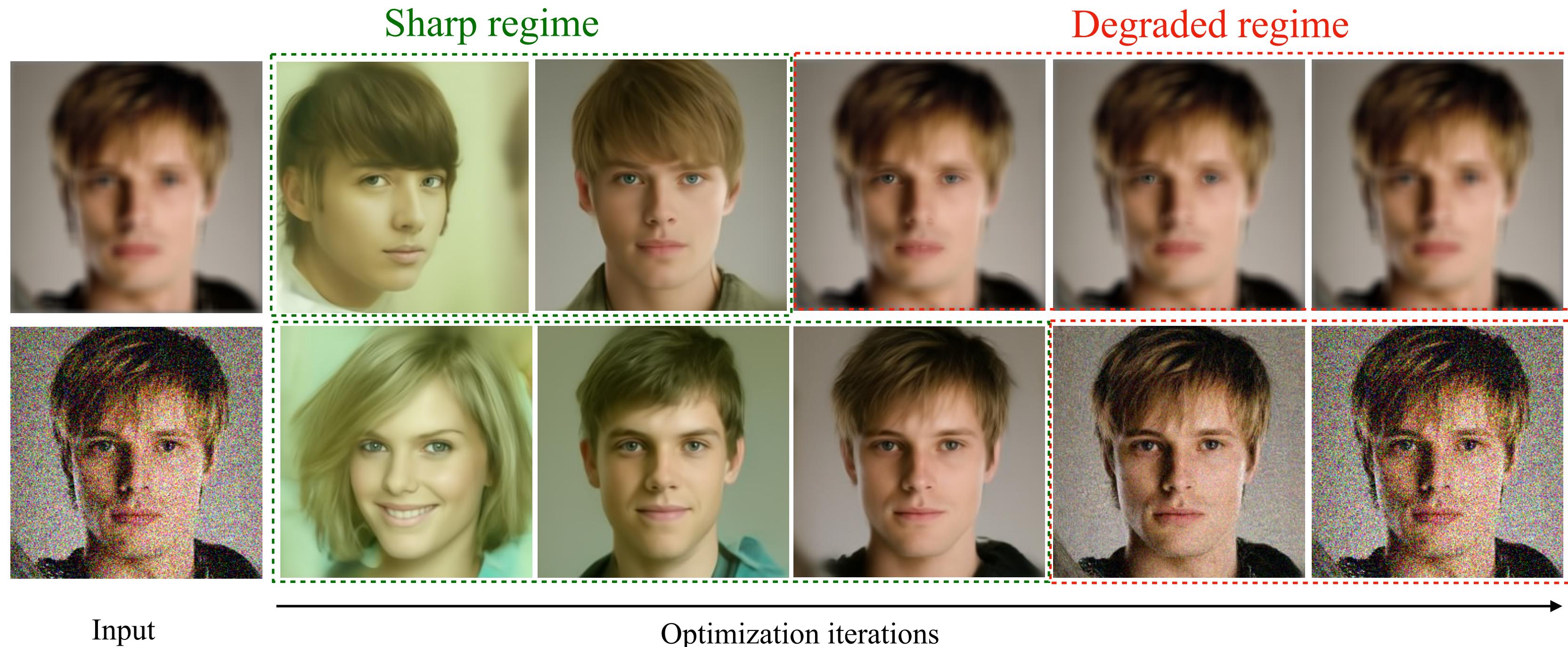
Input



$\hat{x}$

# Two Key Findings

1. Two regimes regardless of the degradation type.



2. Higher resistance to high-frequency artifacts (noise) than to low-frequency distortions (blur).

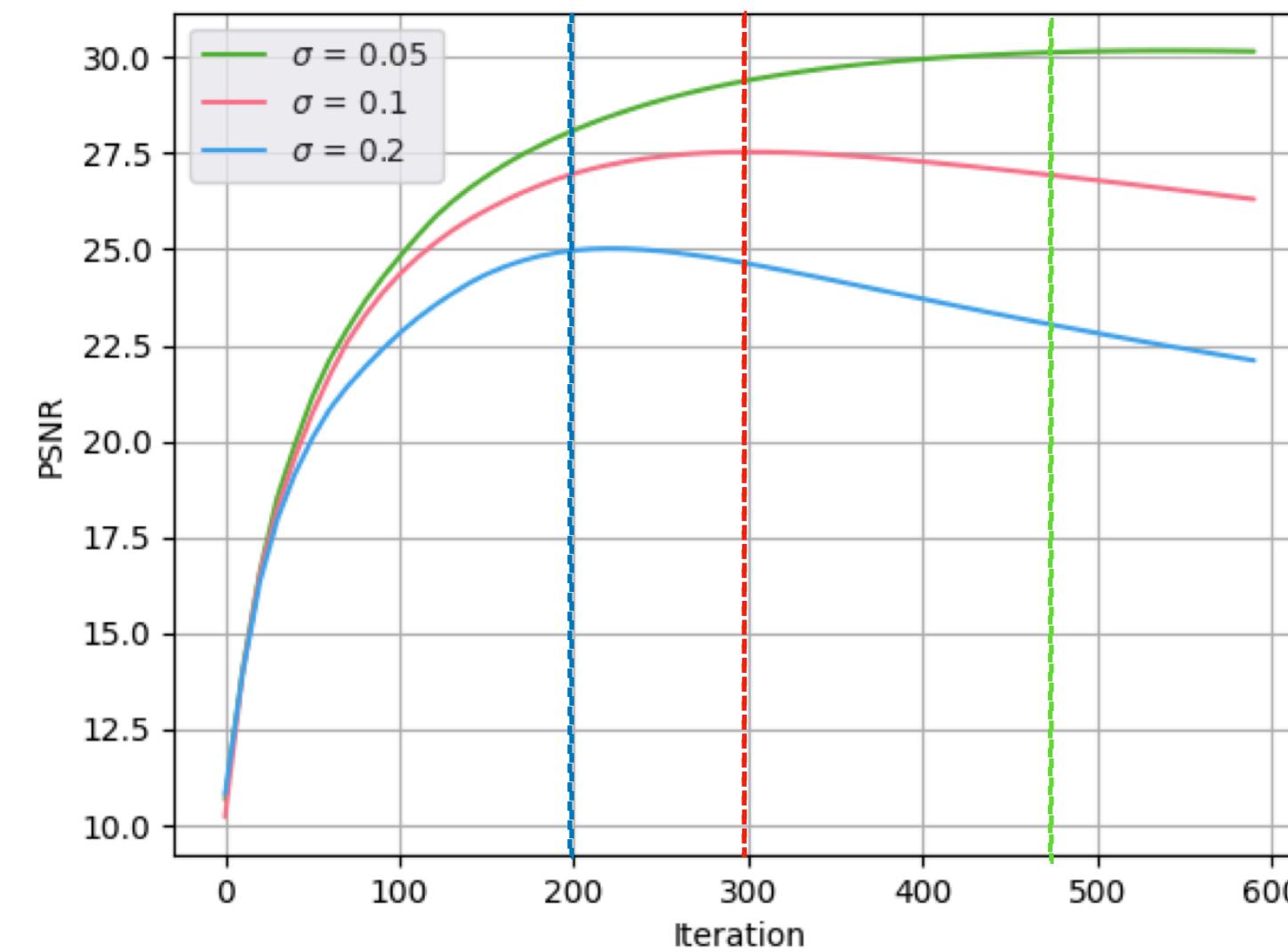
# When to Stop the Optimization?

Can we stop our proposed optimization when reaching the optimal reconstruction?

- Early stopping (similar to DIP)
- We propose a self-supervised stopping criterion based on slope of the loss function and the Laplacian of the reconstructed image

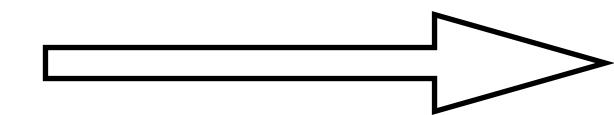
# When to Stop the Optimization?

Degradations adding high-frequency artifacts



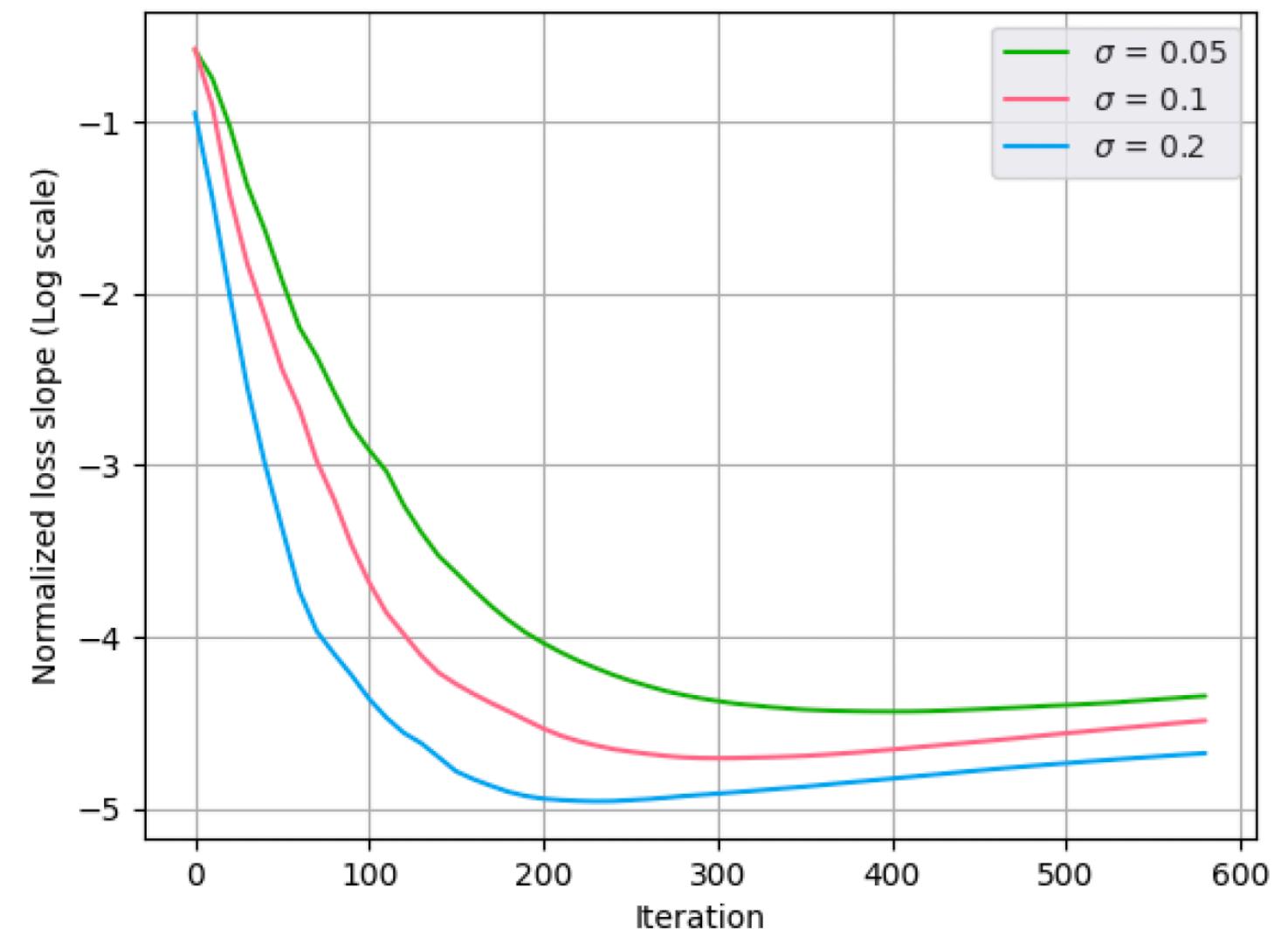
PSNR (w.r.t. ground truth) at different noise levels vs. Iterations

(a) The **noisier** an image is, the **faster** it reaches the optimal reconstruction.



Stop the optimization at iteration  $k$  if :  $\Delta_k < \epsilon$

$$\text{Normalized loss slope: } \Delta_k = \frac{\|g(z_k) - y\|^2 - \|g(z_{k+1}) - y\|^2}{\|g(z_k) - y\|^2}$$



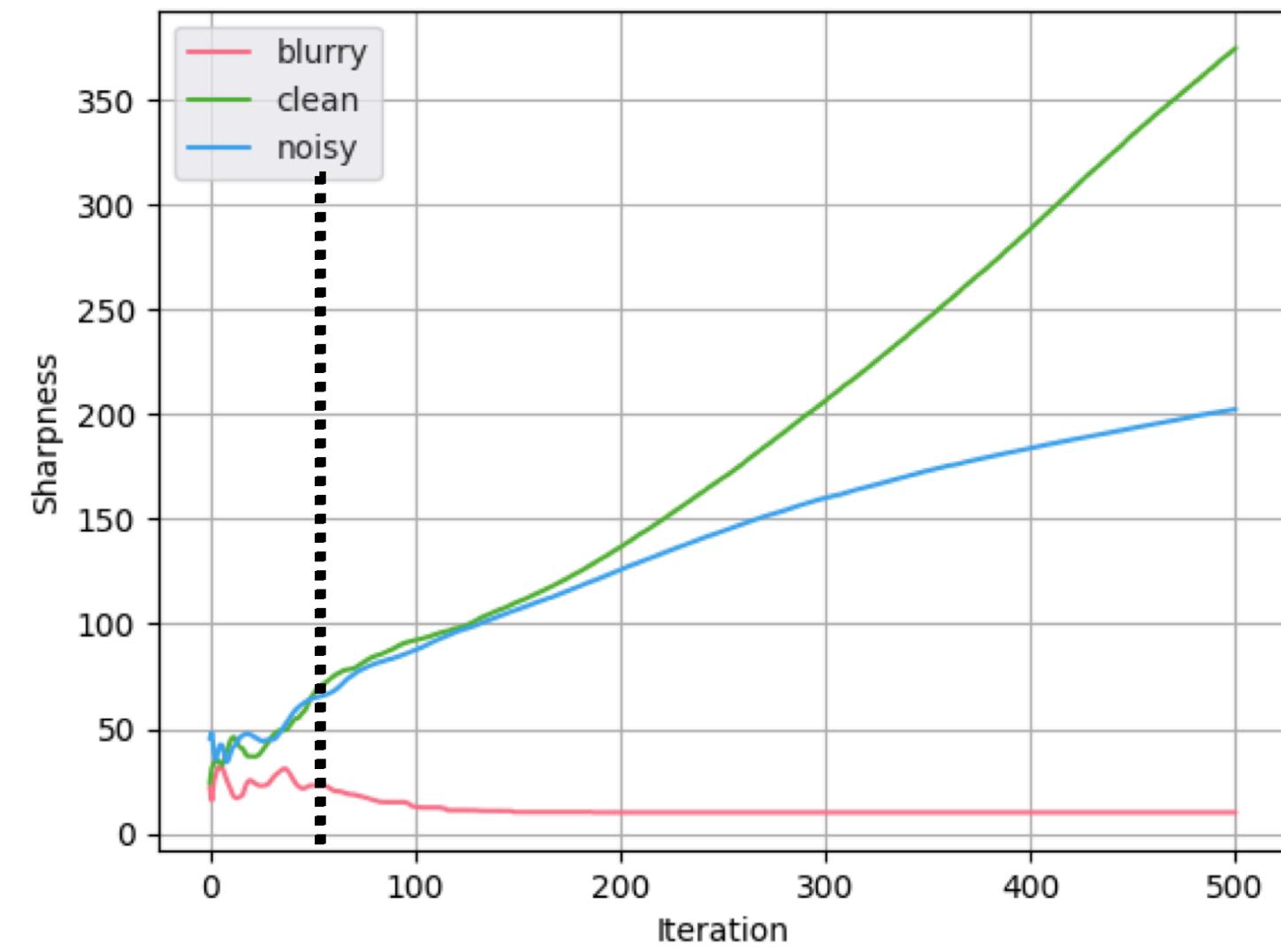
Normalized loss slope  $\Delta_k$  vs. iterations

(b) The **noisier** the image, the **faster** its normalized loss slope drops.

# When to Stop the Optimization?

Degradations removing high-frequency details

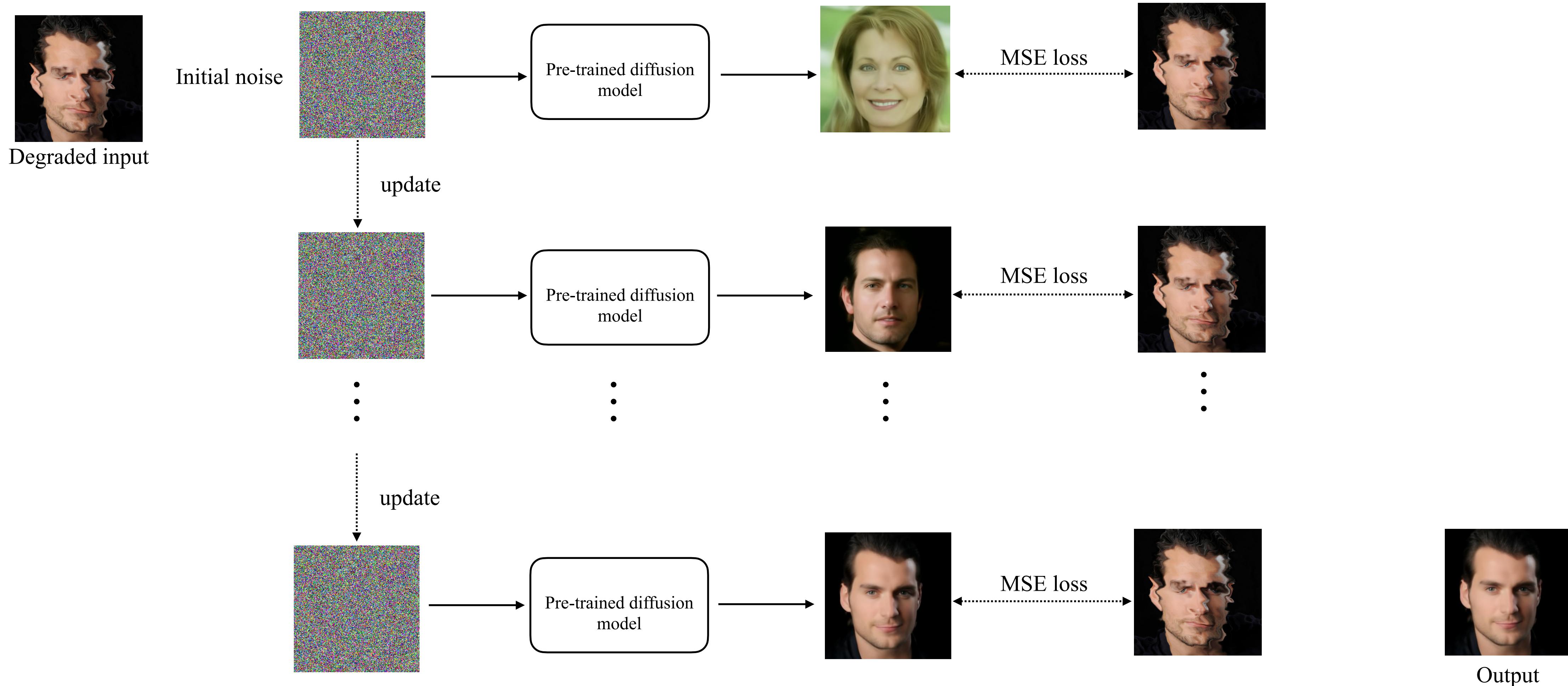
- The variance of the Laplacian  $\sigma_k^2$  is a robust measure of image sharpness. MAPS [Chao et al. BMC bioinformatics 2021]



Variance of the Laplacian of reconstructions vs. Iterations

→ Stop the optimization at iteration  $k$  if:  $k > k_{min}$  and  $\sigma_k^2 > \sigma_{k+1}^2$

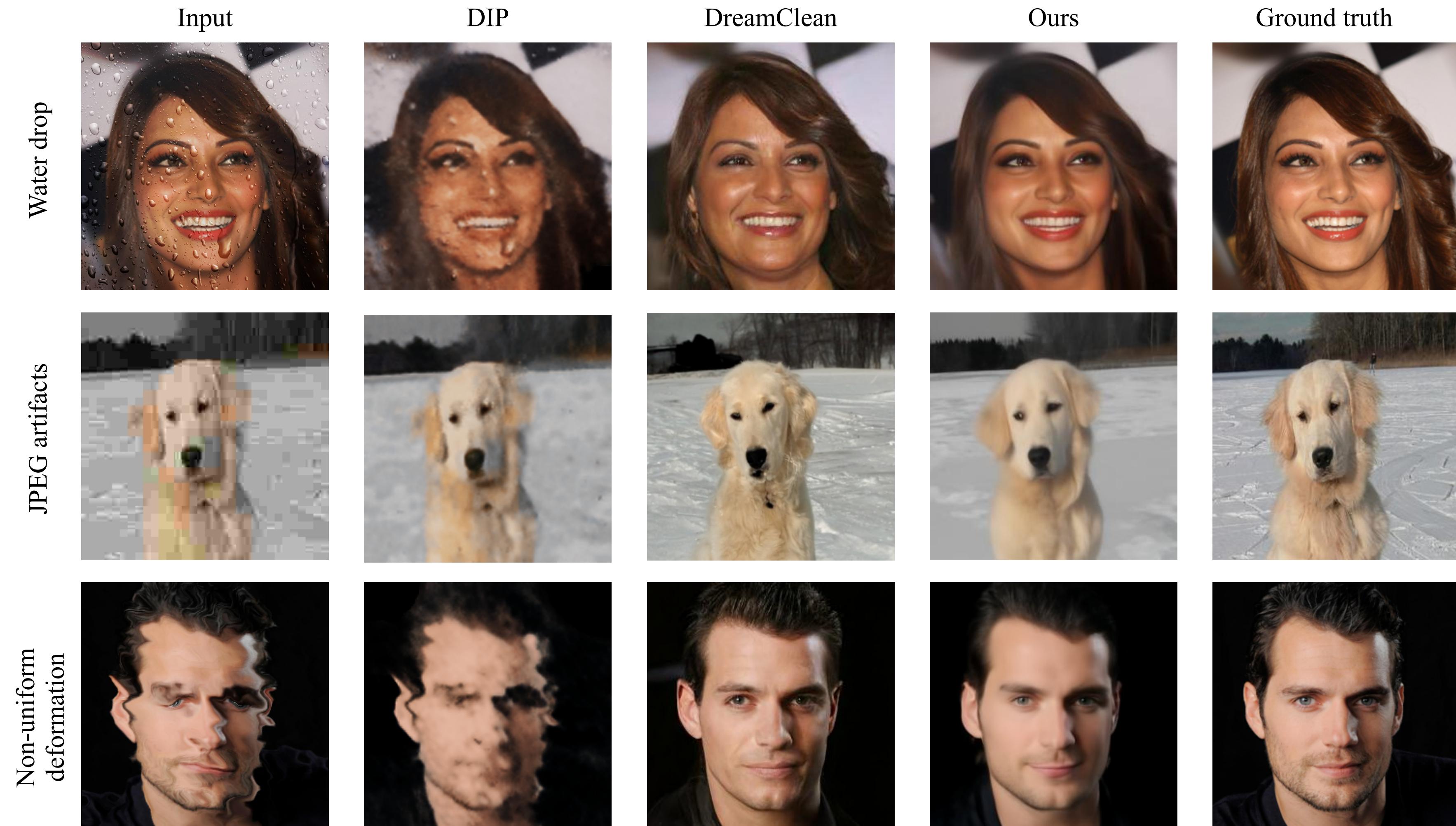
# Diffusion Image Prior (DIIP)



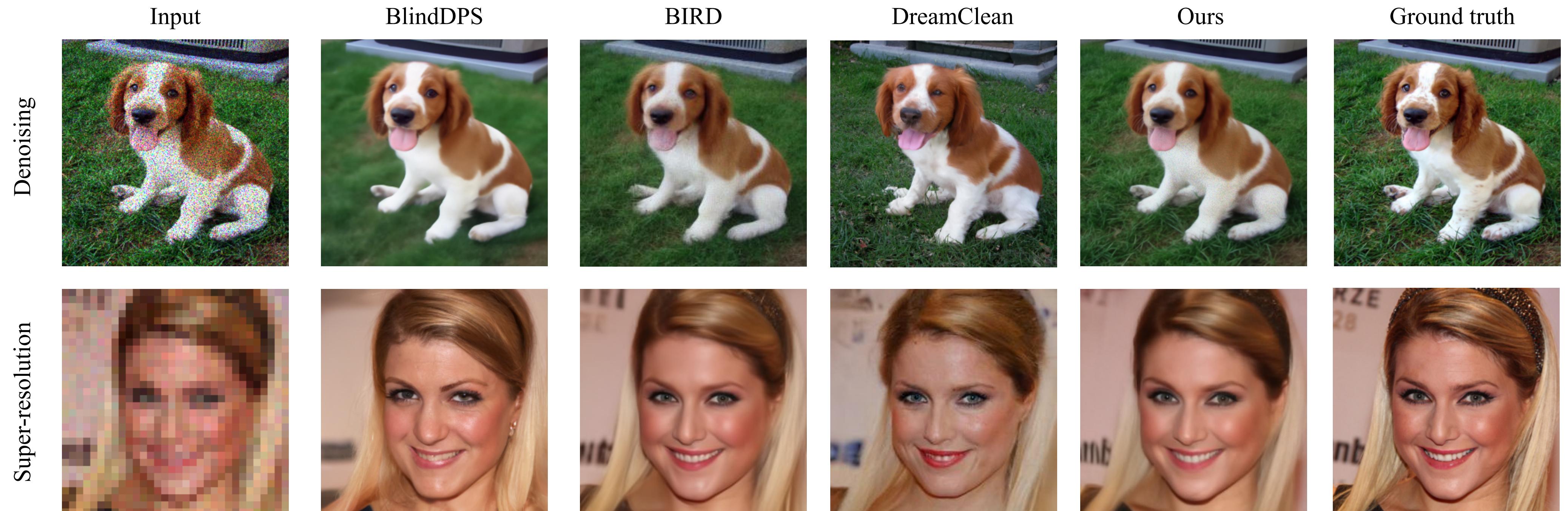
# Experiments

- Unstructured degradations
  - water drop
  - non-uniform deformation
  - JPEG artifacts
- Structured degradations
  - Denoising
  - Super resolution

# Visual Results - Unstructured Degradations



# Visual Results - Structured Degradations



# Quantitative Results

- Unstructured degradations

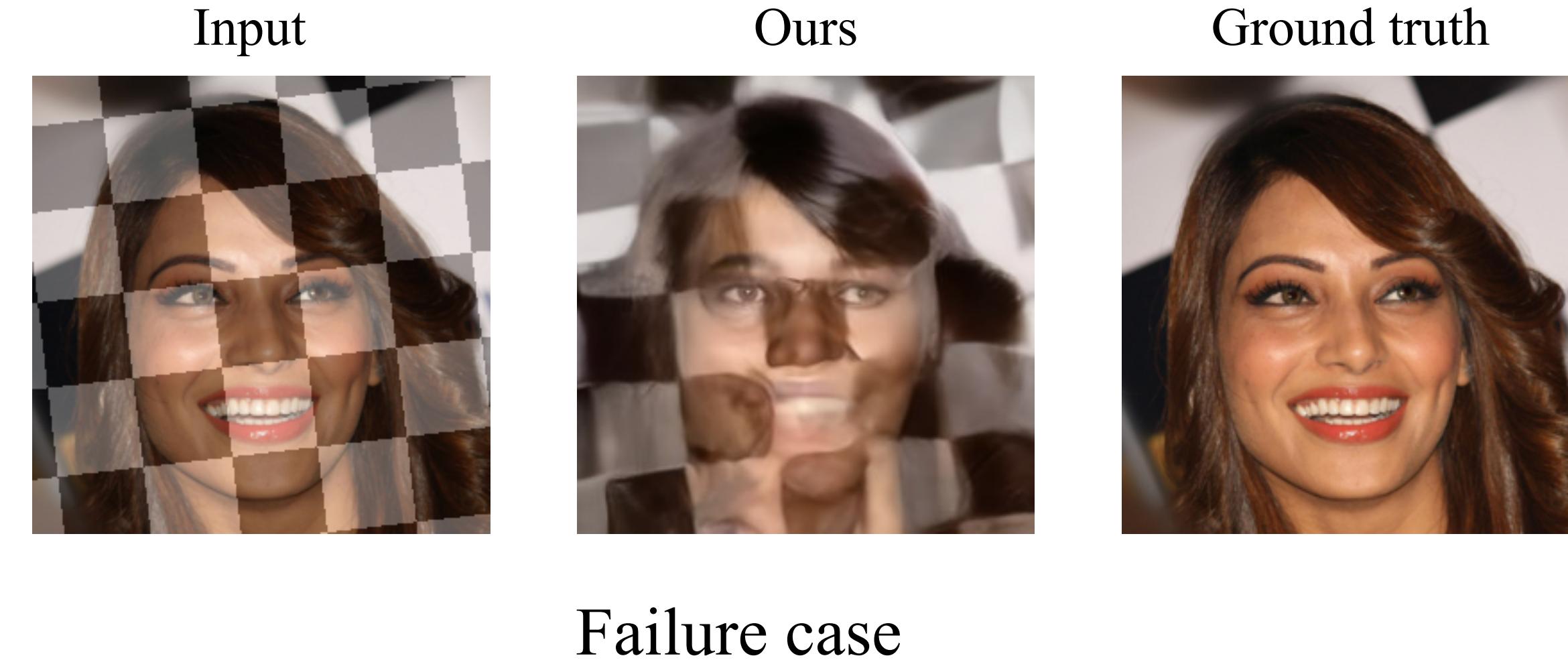
| Method          | JPEG De-artifacting |              |              | Non-uniform Deformation |              |              | Water-drop Removal |              |              |
|-----------------|---------------------|--------------|--------------|-------------------------|--------------|--------------|--------------------|--------------|--------------|
|                 | PSNR ↑              | SSIM ↑       | LPIPS ↓      | PSNR ↑                  | SSIM ↑       | LPIPS ↓      | PSNR ↑             | SSIM ↑       | LPIPS ↓      |
| DIP [16]        | 20.43               | 0.593        | 0.622        | 18.83                   | 0.437        | 0.643        | 20.37              | 0.517        | 0.642        |
| DreamClean [19] | 23.92               | 0.691        | 0.342        | 22.16                   | 0.612        | 0.398        | 22.94              | 0.643        | <b>0.361</b> |
| Ours            | <b>25.29</b>        | <b>0.783</b> | <b>0.325</b> | <b>23.45</b>            | <b>0.689</b> | <b>0.392</b> | <b>23.78</b>       | <b>0.702</b> | 0.377        |

- Structured degradations

| Method          | Denoising    |              |              | Superresolution (×4) |              |              | Superresolution (×8) |              |              |
|-----------------|--------------|--------------|--------------|----------------------|--------------|--------------|----------------------|--------------|--------------|
|                 | PSNR ↑       | SSIM ↑       | LPIPS ↓      | PSNR ↑               | SSIM ↑       | LPIPS ↓      | PSNR ↑               | SSIM ↑       | LPIPS ↓      |
| GDP [8]         | 27.73        | 0.817        | 0.232        | 24.21                | 0.708        | 0.337        | 21.66                | 0.618        | 0.374        |
| Gibbsddrm [13]  | 27.38        | 0.809        | 0.255        | 24.38                | 0.689        | 0.330        | 21.45                | 0.605        | 0.364        |
| BIRD [2]        | 27.92        | 0.821        | 0.238        | <b>25.26</b>         | 0.751        | <b>0.294</b> | 22.63                | 0.626        | 0.352        |
| BlindDPS [5]    | 27.56        | 0.813        | 0.246        | 24.51                | 0.722        | 0.324        | 21.73                | 0.620        | 0.360        |
| DIP [16]        | 25.81        | 0.606        | 0.345        | 21.33                | 0.566        | 0.426        | 20.34                | 0.488        | 0.471        |
| DreamClean [16] | 27.05        | 0.771        | 0.236        | 23.44                | 0.663        | 0.322        | 21.33                | 0.586        | 0.344        |
| Ours            | <b>28.37</b> | <b>0.842</b> | <b>0.224</b> | 25.14                | <b>0.764</b> | 0.301        | <b>22.86</b>         | <b>0.651</b> | <b>0.336</b> |

# Limitations

- Our stopping criteria are still non-optimal.



- Over-smoothed outputs especially in some case of blurry input images.
- Investigating further self-supervised criteria is a promising research direction.

# Summary

- We show the implicit prior of a frozen pre-trained diffusion model when used for degraded image reconstruction.
- We propose a new training-free and fully blind image restoration method, DIIP, which does not assume any prior knowledge of the degradation model.
- We demonstrate state-of-the-art performance on several unstructured degradation tasks.

# Diffusion Image Prior

Hamadi Chihaoui, Paolo Favaro

Computer Vision Group, University of Bern, Switzerland

