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Image Restoration 0CT 19-23, 2025 HHWH"
e Structured Degradations e Unstructured Degradations
e Fully Known or Modeled Operators e Complex or Unknown operators
* Examples: Gaussian deblurring, super- e Examples: Water drop, non-uniform
resolution.. deformation..

Gaussian blur Low resolution Water drop Non-uniform deformation

Heavily explored Rarely explored
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* Supervised methods  Unsupervised methods
* neced an annotated dataset which 1s hard to e Degradation operator fully known
collect
 Training-based methods  Training-free methods

 Rely on a dataset and usually fail to
generalize on new degradation
patterns

e Applied directly to the input, no
generalization problem.
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Appl‘OaCh OCT 19-23, 2025

Ground-truth

We introduce a new 1mage restoration method that:

1. does not assume any prior knowledge of the

degradation model.
2. 1s fully unsupervised.

3. 1s traming-free (leverages a pre-trained

model).

4. shows higher fidelity to the input compared

to existing methods.
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Inspiration and Motivation 01923, 2025

Deep Image Prior (DIP) [Ulyanov et al. CVPR 2018

. o . MSE-Loss
Fixed initial noise DIP
+ Update
\
MSE-Loss
. > DIP
+ Update
\4
MSE-Loss
N > DIP

Visual 1llustration of Deep Image Prior (DIP)
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Deep Image Prior (DIP) T 1923, 202

e DIP optimization:

0% = arg min [|/y(z) = iz (M
X :f@*(Z)

where y 1s the mnput image, f, 1s an untrained CNN, and z 1s an 1nitial noise.

e However, an untrained deep CNN 1s a too weak prior.

e What about using a stronger prior?
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DIftusion Image Prior (DIIP) T 1923, 202

Proposed optimization:

z* = argmin [lg(z) —y|I*  (2)
$

X = g(z*)
where y 1s the input 1mage, g 1s a pre-trained diffusion model, and z 1s noise.

Algorithm 1 Iterative Solver of Eq (2)

Require: Degraded image y, pre-trained diffusion g,
learning rate o.
Ensure: Return
I: Initialize 23 ~ N(0,T)
2: fork:1 — N —1do

zf = g(2%)

3
4: Zéﬁ_l = Zécﬂ — anTHCI?IS _ yHQ
5
6

. end for Fast computation of g(z;)
. return 29 = g(2%)
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Empirical Study 0T 1823, 207

 Empirical study on synthetic data.

o Assumption: any degradation either:

* removes some high frequency details. * adds some high frequency artifacts.

e Test DIP and our proposed optimization on blurry images and noisy ones.
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Case ()f N()ise OCT 19-23, 2025 HHWH"
DIP DIIP
* = argmin [[fp(2) - yII 2* = arg min [|g(2) — ylI?
X = 9*(2) X = g(z*)

Ground-truth Ground-truth
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Case ()f Blur OCT 19-23, 2025 HHWH"
DIP DIIP
0% = arg ngn o —ylI> (D) 7* =argmin ||giz) = y|I> ()

X = fé*(Z)
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Two Key Findings OCT 19-23, 2025

1. Two regimes regardless of the degradation type.

Sharp regime Degraded regime

B

Optimization iterations

2. Higher resistance to high-frequency artifacts (noise) than to low-frequency

distortions (blur).
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When to Stop the Optimization? 011523, 202

Can we stop our proposed optimization when reaching the optimal reconstruction?

o Early stopping (similar to DIP)

o We propose a self-supervised stopping criterion based on slope of the loss

function and the Laplacian of the reconstructed image
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When to Stop the Optimization? 011523, 202

Degradations adding high-frequency artifacts

18(z0) — YII* = llg(ziry) — YII?

Normalized loss slope: A, =

lg(z) — ylI?
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lteration lteration
PSNR (w.r.t. ground truth) at different noise levels vs. Iterations Normalized loss slope A, vs. iterations
(a) The noisier an image 1s, the faster it reaches the optimal reconstruction. (b) The noisier the image, the faster its normalized loss slope drops.

' :> Stop the optimzation at iteration kKif : A, < e
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When to Stop the Optimization? 011523, 202

Degradations removing high-frequency details

e The variance of the Laplacian 6,3 1S a robust measure of 1mage

sharpness. MAPS [Chao et al. BMC bioinformatics 2021}

350 A

300 A

250 A

| :> Stop the optimization at iteration k if: k > k.. and 0,3 > 0k2+1

200 A n

Sha
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Variance of the Laplacian of reconstructions vs. Iterations
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DIftusion Image Prior (DIIP) T 1923, 202

4 )
» | Pre-trained diffusion MSElOSS
model
\_ v,
4 )
MSE loss
» | Pre-trained diffusion > @
model
\_ v,
( )
MSE loss
> Pre-trained diffusion > e P
model
\_ v,

Output
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e Unstructured degradations

O water drop

O non-uniform deformation

o JPEG artifacts

e Structured degradations

O Denoising

O Super resolution
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Visual Results - Unstructured Degradations sz
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Input DIP DreamClean Ours Ground truth

JPEG artifacts Water drop

Non-uniform
deformation
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Visual Results - Structured Degradations OCT19-23, 2025

BlindDPS DreamClean Ground truth

Denoising

Super-resolution




Quantitative Results

e Unstructured degradations

ICCV

0CT19-23, 2025

Method JPEG De-artifacting Non-uniform Deformation Water-drop Removal

PSNR 1 SSIM 1 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 7 SSIM 1 LPIPS |
DIP [16] 20.43 0.593 0.622 18.83 0.437 0.643 20.37 0.517 0.642
DreamClean [19] 23.92 0.691 0.342 22.16 0.612 0.398 22.94 0.643 0.361
Ours 25.29 0.783 0.325 23.45 0.689 0.392 23.78 0.702 0.377

e Structured degradations

Method Denoising Superresolution (X 4) Superresolution (X 8)

PSNR 1 SSIM 7 LPIPS | PSNR 1 SSIM 1 LPIPS | PSNR 7 SSIM 1 LPIPS |
GDP [8] 27.73 0.817 0.232 24.21 0.708 0.337 21.66 0.618 0.374
Gibbsddrm [13] 27.38 0.809 0.255 24.38 0.689 0.330 21.45 0.605 0.364
BIRD [2] 27.92 0.821 0.238 25.26 0.751 0.294 22.63 0.626 0.352
BlindDPS [5] 27.56 0.813 0.246 24.51 0.722 0.324 21.73 0.620 0.360
DIP [16] 25.81 0.606 0.345 21.33 0.566 0.426 20.34 0.488 0.471
DreamClean [16] 27.05 0.771 0.236 23.44 0.663 0.322 21.33 0.586 0.344
Ours 28.37 0.842 0.224 25.14 0.764 0.301 22.86 0.651 0.336

= HONOLULU

HAWAII
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e Our stopping criteria are still non-optimal.

Input Ours Ground truth

Failure case

e Over-smoothed outputs especially in some case of blurry input images.

e [nvestigating further self-supervised criteria 1s a promising research direction.
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Summary 0CT 19-23, 2025

* We show the implicit prior of a frozen pre-trained diffusion model when used for

degraded 1image reconstruction.

e We propose a new training-free and fully blind image restoration method, DIIP,

which does not assume any prior knowledge of the degradation model.

e We demonstrate state-of-the-art performance on several unstructured degradation

tasks.
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