

Website

THE DEVIL IS IN THE SPURIOUS CORRELATIONS:

Boosting Moment Retrieval with Dynamic Learning

Xinyang Zhou^{*1}, Fanyue Wei^{*2}, Lixin Duan¹, Angela Yao², Wen Li¹,

¹University of Electronic Science and Technology of China,

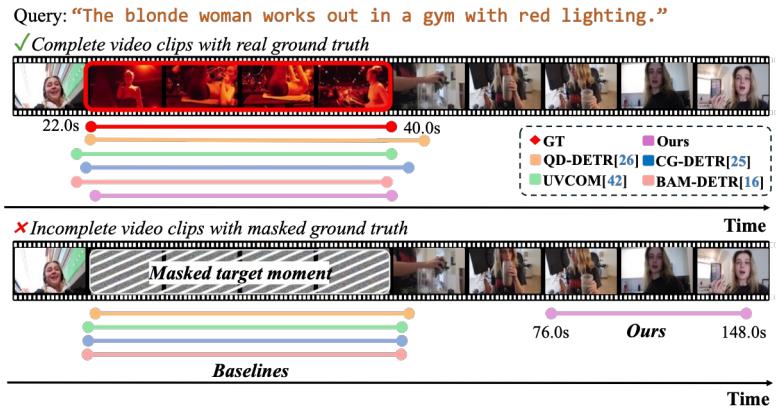
²National University of Singapore

Code: <https://github.com/xyangzhou/TD-DETR>

Website: <https://xyangzhou.github.io/TD-DETR>

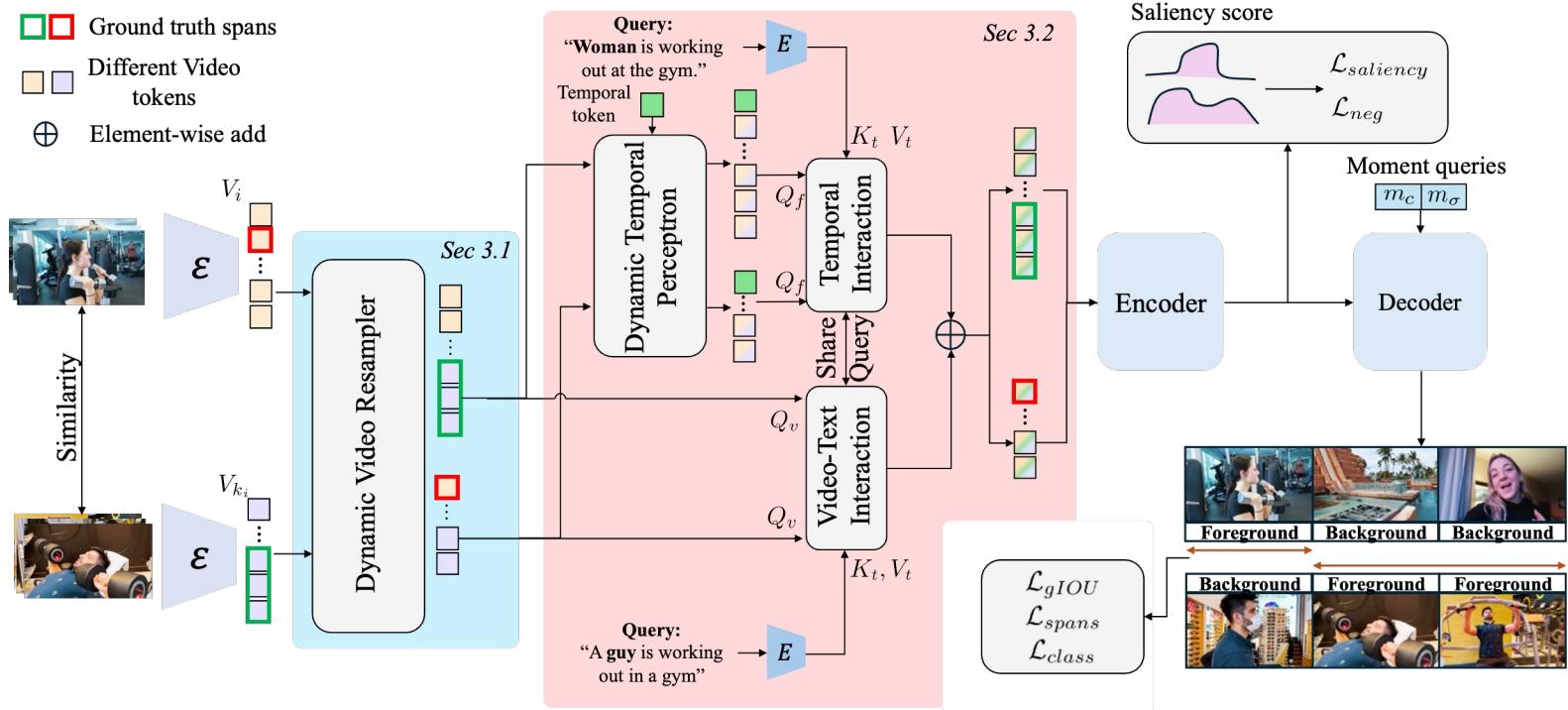
Paper ID: 6639

Exhibit Hall I #1933


■ Video Moment Retrieval

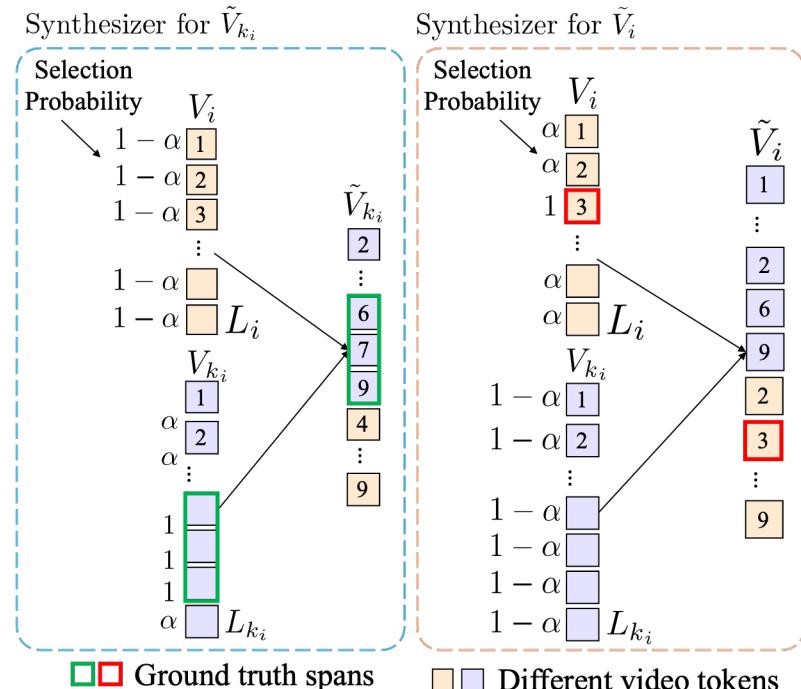
- Browsing through entire videos is time-consuming.
- Tools to retrieve corresponding moments automatically by textual description is widely needed

■ Motivation

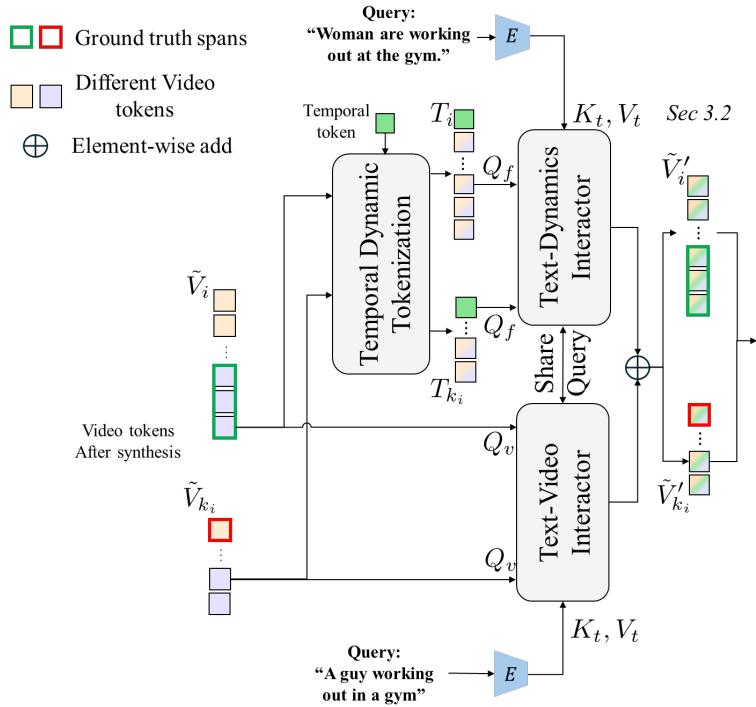

- The model makes predictions by overly associating queries with background frames rather than distinguishing target moments.

- Even when the target moment is masked, the existing method still predicts a similar span.
- Such issues lead to a sub-optimal performance.

■ Learning Temporal Dynamics utilizing DETR


- Ground truth spans
- Different Video tokens
- ⊕ Element-wise add

Approach


■ Video Synthesizer for Dynamic Context

- Spurious correlations stem from linking the moment's **context** to the text **query**.
- Synthesizing new samples for the target moments with more dynamic contextual variations.
- Enforcing model to attend to the target moment **corresponding** to the text query, even with in a dynamic context.

■ Temporal Dynamics Enhancement

- The attention of DETR-like architecture tends to emphasize background frames.
- Align text queries with temporal **dynamic** representations.
- Establishing a **stand-up** correlation between the query-related moment and its context.

Experiments

■ Results on Standard Evaluation

QVHighlights dataset

Method	MR-R1		MR-mAP		
	@0.5	@0.7	@0.5	@0.75	Average
MCN [2] <i>ICCV'17</i>	11.41	2.72	24.94	8.22	10.67
CAL [6] <i>arXiv'19</i>	25.49	11.54	23.40	7.65	9.89
XML [17] <i>ECCV'20</i>	41.83	30.35	44.63	31.73	32.14
XML+ [18] <i>NIPS'21</i>	46.69	33.46	47.89	34.67	34.90
SnAG [†] [27] <i>CVPR'24</i>	59.79	48.10	58.63	44.37	42.71
SnAG /w TD-DETR	66.48	52.93	63.71	49.11	46.75
Moment-DETR [18] <i>NIPS'21</i>	52.89	33.02	54.82	29.40	30.73
UMT [23] <i>CVPR'22</i>	56.23	41.18	53.83	37.01	36.12
MomentDiff [19] <i>NIPS'23</i>	57.42	39.66	54.02	35.73	35.95
QD-DETR [26] <i>CVPR'23</i>	62.40	44.98	62.52	39.88	39.86
UniVTG [20] <i>ICCV'23</i>	58.86	40.86	57.60	35.59	35.47
CG-DETR [25] <i>arXiv'23</i>	65.40	48.40	64.50	42.80	42.90
UVCOM [42] <i>CVPR'24</i>	63.55	48.70	64.47	44.01	43.27
BAM-DETR [16] <i>ECCV'24</i>	64.53	48.64	64.57	46.33	45.36
TD-DETR (Ours)	64.53_{±0.62}	50.37_{±0.53}	66.21_{±0.21}	47.32_{±0.53}	46.69_{±0.26}

[†]reproduced by the official code

Charades-STA dataset

Method	R1@0.5	R1@0.7
CAL [6]	44.90	24.37
2D TAN [52]	39.70	23.31
VSLNet [49]	47.31	30.19
IVG-DCL [28]	50.24	32.88
SnAG [†] [27]	65.72	37.32
SnAG /w TD-DETR	70.14	42.35
Moment-DETR [18]	53.63	31.37
Moment-Diff [19]	55.57	32.42
UMT [23]	48.31	29.25
QD-DETR [26]	57.31	32.55
CG-DETR [25]	58.40	36.30
BAM-DETR [16]	59.95	39.38
TD-DETR (Ours)	60.89	40.35

[†]reproduced by the official code

■ Results on Spurious Correlation Evaluation

- We replace the target clips of video content with masks without changing the duration of the videos.
- To verify the issue of spurious correlation, we introduce the Spurious mAP as the metric.
- Our model achieves the best ratio of mAP to Spurious mAP.

Method	Spurious R1 ↓		Spurious mAP ↓		Standard mAP ↑	
	@0.7	@0.9	@0.75	Avg.	@0.75	Avg.
QD-DETR	9.35	5.29	9.90	10.40	41.82	41.22
Ours w/ QD	8.26	3.68	7.46	8.15	49.86	49.05
CG-DETR	4.65	1.29	5.55	6.14	45.70	44.90
Ours w/ CG	2.58	0.39	3.38	4.41	49.16	48.38
BAM-DETR	7.16	1.87	6.30	6.72	48.56	47.61
Ours w/ BAM	1.61	0.52	1.73	1.98	49.62	48.67

Experiments

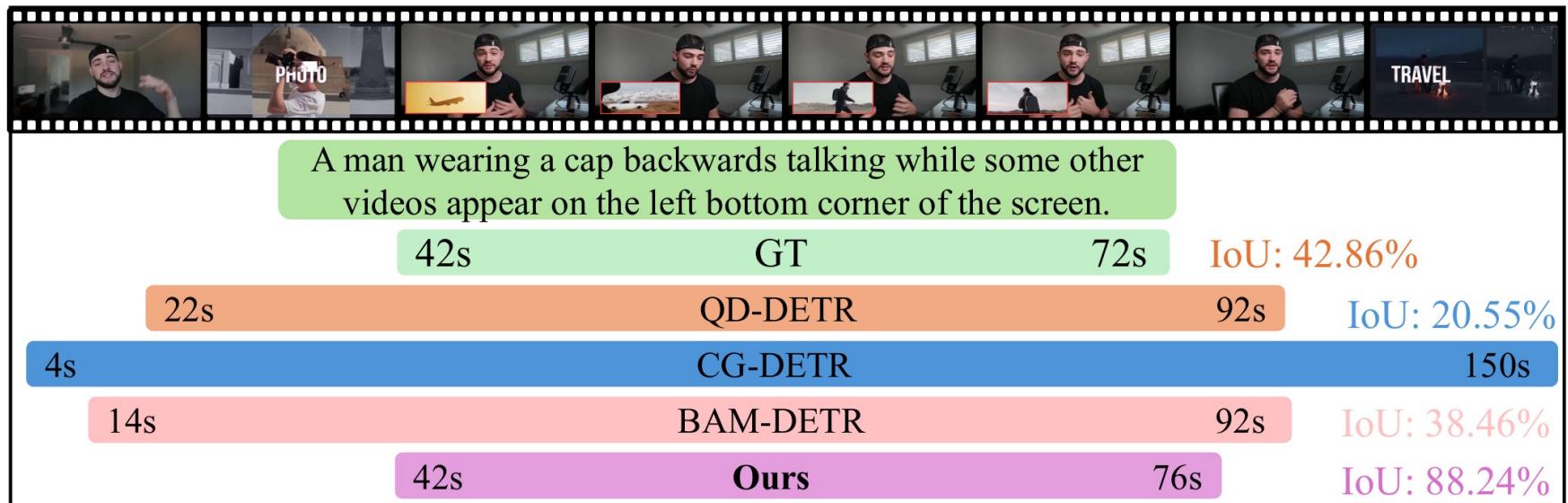
■ Ablation study

Analysis on the proposed components

	VSDC	TDEM	QVHighlight								Charades-STA				
			R1↑		mAP↑			Spurious R1↓		Spurious mAP↓		R1↑		Spurious R1↓	
			@0.5	@0.7	@0.5	@0.75	Avg.	@0.7	@0.9	@0.75	Avg.	@0.5	@0.7	@0.7	@0.9
(a)			61.12	46.77	62.45	43.66	42.54	9.35	5.29	9.90	10.40	57.31	32.55	25.72	6.31
(b)	✓		63.47	49.39	64.82	47.67	46.39	8.77	3.87	8.64	8.91	39.12	63.67	23.15	5.42
(c)		✓	62.93	48.25	64.22	45.49	44.84	8.84	4.0	9.10	9.56	38.51	60.80	24.03	5.73
(d)	✓	✓	65.88	53.67	66.43	49.86	49.05	8.26	3.68	7.46	8.15	60.89	40.35	22.13	4.82

Generalization on different baselines

Method	QVHighlights val			Charades-STA test	
	R1@0.7	mAP@0.75	mAP	R1@0.5	R1@0.7
CG	52.10	45.70	44.90	58.40	36.30
Ours w/ CG	53.25 <i>+1.15</i>	49.16 <i>+3.46</i>	48.38 <i>+3.48</i>	59.35 <i>+0.95</i>	37.84 <i>+1.54</i>
BAM	51.61	48.56	47.61	59.95	39.38
Ours w/BAM	52.87 <i>+1.26</i>	49.62 <i>+1.06</i>	48.82 <i>+1.21</i>	60.92 <i>+0.97</i>	40.25 <i>+0.87</i>
QD	46.66	41.82	41.22	57.31	32.55
Ours w/ QD	53.67 <i>+7.01</i>	49.86 <i>+8.04</i>	49.00 <i>+7.78</i>	60.89 <i>+3.58</i>	40.35 <i>+7.80</i>
SnAG	48.10	44.37	42.71	65.72	37.32
Ours w/ SnAG	52.93 <i>+4.83</i>	49.11 <i>+4.74</i>	46.75 <i>+4.04</i>	70.14 <i>+4.42</i>	42.35 <i>+5.03</i>


Comparisons across different sampling strategies.

Method	QVHighlights			Charades-STA	
	R1@0.7	mAP@0.75	mAP	R1@0.5	R1@0.7
baseline	46.66	41.82	41.22	57.31	32.55
w/ random	51.29	47.82	47.56	58.66	37.98
w/ similarity	53.67	49.86	49.05	60.89	40.35

Experiments

■ Qualitative Analysis

Example MR prediction for the given masked video.

■ Contribution

- To the best of our knowledge, we are the first to investigate the **spurious correlation** in moment retrieval.
- We propose a **dynamic** learning approach that mitigates *spurious correlations*
 - Dynamically contextualizing target moments through novel video **synthesis**
 - Enhancing representations with **aligned** temporal dynamics.
- The proposed method achieves **state-of-the-art** performance across all benchmarks and provides a strong interpretation of *spurious correlations*.

Thank you