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Existing image-to-3D object-level generation methods are
mainly two-stage. First generate blocked multi-view images

and then lift to 3D, which easily leads to view-inconsistency.

Current single-view scene-level reconstruction algorithms
usually rely on depth estimator and easily collapse when the

viewpoint changes significantly.

To cope with these problems, we propose a 3D Gaussian

Splatting-based diffusion model, DiffusionGS
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 Our DiffusionGS predicts 3D Gaussian point clouds at each timestep and ¢ We also design a scene-object mixed

renders x0 at each view to proceed the multi-view denoising process.

training strategy with two angle constraints
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* To better perceive the relative depth and geometry, we
customize a Reference-Point Plucker Coordinate (RPPC)

(a) r = (oxd,d) (b) » = (0 — (0-d)d,d)

* During the mixed training, we also impose a point

distribution loss as the warm up for object-level generation:
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* Eventually, the overall training objective is

L= (ﬁde + ﬁnv) . ]—iter>iter0 + £pd . 1iter§iter0 . 10bject
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Method DreamGaussian [67] LGM [68] DMV3D [74] CRM [71] 12345++ [36] DiffusionGS (Ours) Method Infer Time Post-hoc GS Time PSNR 1 SSIM ¢ LPIPS | FID |
User Study Score 1 1.94 3.04 3.16 2.69 3.81 4.88 PhotoNVS [81]] 61s 2417s 15.31 0.5215 0.4589 28.30
Runing Time (s) J. 120 4.1 314 10 60.0 5.8 Our DiffusionGS 6s 0s 21.63 0.6787 0.2743 15.87

(a) User preference and running time comparison on object generation  (b) Comparison with the SOTA 2D method PhotoNVS on [90]

Method PSNR1 SSIM{ LPIPS| FID| Method PSNR1+ SSIMt LPIPS| FID| Method PSNR+ SSIMt LPIPS| FID|
LGM [68] 1601 07262 03255  86.32 LGM [68] 1427 07183 03003  75.55 PixelNeRF [79] 1746 05713 05525  159.52
GS-LRM[87] 1878  0.7974 02720  123.55 GS-LRM [87] 1770 07950 02411  112.96 Splatter-Tmage [65] 1821  0.6115  0.4839  120.35
DMV3D[74]  23.69  0.8634  0.1131 3228 DMV3D[74] 2082  0.8347  0.1289  33.48 Flash3D [87] 2029  0.6483 03610  35.03
DiffusionGS 2589  0.8880  0.0965  9.03 DiffusionGS 2207  0.8545  0.1115 1152 DiffusionGS 2163  0.6787 02743 1587

(c) Object generation results on ABO [11] (d) Object generation results on GSO [13]  (e) Scene reconstruction on Realestate 10K [90]
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Please visit our project page for more video and interactive results
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Code & Model : hitps://github.com/caiyuanhao1998/Open-DiffusionGS
Project page: https://caiyuanhao1998.qithub.io/project/DiffusionGS/

Project Page
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