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Introduction

. are instrumental tools for neurological disease
diagnosis, surgical planning, and image registration quality control.

« Existing deep learning (DL) landmark methods often depend on large
annotated data, but expert labeling is slow, costly, and scarce.

« Cross-scanner/contrast variability (e.g., Tlw vs T2w, different field
strengths) degrades performance in many prior approaches.

v" Previous works rely on costly metrics (e.g., Mutual Information) or
multi-contrast training data
v' Multi-contrast data are scarce & contrast synthesis needs dense

segmentations AFIDs landmarks on the
MNI ICBM152-sym template




CABLD framework Overview

We proposed CABLD, a self-supervised framework that learns 3D brain landmarks from unlabeled
scans using only a single annotated template.
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CABLD Key Components

* Consistency-Based Regularization L ,,qistency
v Inter-subject and subject-template consistency losses with a registration 0SS Lgegisiration
enforce anatomical consistency for landmark detection with a single template annotation.
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3D Contrast Augmentation

To generalize the model across unseen MRI contrasts, CABLD uses novel 3D random
convolution to augment MRI contrasts, without needing multi-contrast training data.

Original Augmented Contrasts

RandConv1 x 1 x 1— Leaky Relu




Datasets & Evaluation Metrics

« Training MRI data (
OpenNeuro repository datasets.

): 1544 brain MRIs (3T & 7T) from IXl, AHEAD, HCP-Aging,

* AFIDs brain landmark dataset ( ). 122 brain MRIs, each with 32 landmarks, from the
HCP (T1w & T2w), OASIS-1, and SNSX datasets.

« Brain MRI template (

\_

Landmark Detection
Accuracy Metrics

N

J

): Tlw MNI ICBM152-sym MRI template.

« Mean Radial Error (MRE): Average Euclidean distance
between predicted and ground truth landmarks.

« Success Detection Rate (SDR): Percentage of predictions
within accuracy thresholds.



Results

 Validated on 3 diverse datasets (3T & 7T, Tlw MRIs), CABLD achieves SOTA accuracy

Method HCP Tlw OASIS SNSX
MRE(mm)| SDR@BGmm)T SDR(6Gmm)T | MRE(mm) | SDR@Gmm)T SDR((6mm)T | MRE(mm)]| SDR3mm)T SDR (6mm) T
3D SIFT (-) 39.44 +31.02 5.72% 20.62% 39.08 +29.70 3.70% 17.71% 41.67 +31.84 4.52% 17.13%
NiftyReg (NMI) 443 +242 25.00% 81.25% 8.23+3.29 1.85% 22.69% 9.61 £4.03 0.43% 12.71%
ANTs (CCO) 3.85+2.26 36.97% 89.16% 438 +2.64 29.39% 81.25% 6.36 + 3.28 10.88% 49.78%
ANTs (MI) 3.65+2.29 45.52% 92.29% 4.15+2.65 38.88% 85.38% 6.06 +3.22 18.75% 54.43%
KeyMorph (64 KPs, Dice) 8.05 +£4.51 10.93% 38.43% 8.20+4.64 10.30% 36.57% 9073 +5.35 6.03% 31.35%
KeyMorph (128 KPs, Dice) 5.77 +291 13.95% 58.43% 6.41 +3.41 13.31% 51.62% 899 +4.16 3.66% 25.43%
KeyMorph (256 KPs, Dice) 5.37 +3.12 20.83% 66.04% 6.44 + 3.81 12.61% 55.20% 8.80 +5.22 7.65% 35.56%
KeyMorph (512 KPs, Dice) 4.67+247 23.30% 78.12% 7.15+3.63 6.82% 40.97% 5.77 £ 3.27 18.10% 60.66%
BrainMorph (MSE+Dice) 4.11 +£2.30 31.35% 86.15% 5.28 +3.07 17.36% 74.31% 13.66 + 18.21 14.66% 41.38%
uniGradICON (LNCC) 4.12+2.53 34.38% 84.06% 4.63 +3.00 30.09% 76.97% 5.27+3.53 29.53% 70.63%
MultiGradICON (LNCC?) 4.10 +2.56 34.90% 84.17% 4.62 +3.01 30.79% 77.89% 5.21 +3.40 28.68% 70.84%
Fully Supervised 3D CNN (-) [ 4.65 +2.40 24.27% 72.81% 4.53 +2.81 25.00% 79.28% | 6.64 + 3.86 12.61% 52.26%
CABLD (Ours, MSE) 3.27+2.24 54.48% 93.69% 3.89+ 2.69 39.24% 87.15% | 5.11 £ 3.19 29.63% 71.01%

CABLD and baseline methods performance on three different Tlw MRI datasets



Results

« CABLD is robust against unseen MRI contrasts (T2w HCP MRISs)

T2w [Tested]

Method MRE (mm) | SDR (3mm) T SDR (6mm) T
3D SIFT (-) 54.90 £ 24.51 0.00% 0.73%
NiftyReg (NMI) 440241 25.50% 82.25%
ANTs (MI) 391+219 35.00% 84.27%
KeyMorph (64 KPs, Dice) 6.00 + 2.64 11.87% 52.08%
KeyMorph (128 KPs, Dice) 8.66 +4.29 5.93% 28.64%
KeyMorph (256 KPs, Dice) 6.41 £3.06 8.65% 51.56%
KeyMorph (512 KPs, Dice) 3.54 % 331 22.18% 64.06%
BrainMorph (MSE+Dice) 424 +243 32.71% 82.19%
uniGradICON (LNCC) 13.44 + 3.88 0.42% 3.33%
MultiGradICON (LNCC?) 4.31+2.70 33.33% 81.83%
CABLD (Ours, MSE) 3.99 &+ 2.25 27.19% 86.43%

Performance on an unseen T2w MRI dataset



Results

Results

®aGTs

Visual demonstration [3D landmarks are projected to 2D]

HCP-T1w




Ablation Studies: Different Components Impact

« Ablation Studies to reveal impacts of different components in CABLD

v" Adding consistency loss significantly improved MRE

v" Random convolution further enhanced generalization across unseen contrasts (T2w MRI)

Methods HCP-T1w OASIS SNSX HCP-T2w
Base Model 53.69 £25.63 55.02+2568 53.11 £29.18 59.79 +26.39

+Leons 370£241 403269  643+3.64 4590+ 17.77
consistency ('4999) (-5099) (-4668) (-1389)

3274224  389+269 511£359  3.99+225
(-0.43) (-0.14) (-1.32) (-41.91)

+ Random Convolution

Impact of different components of CABLD on MRE



Ablation Studies: Robustness Test

* Robustness against random rotations (common in MRI acquisition)
v" Maintained high accuracy under augmented rotational misalignments
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Age Robustness & Downstream Tasks

 Robustness against age-related anatomical variations

o Performance across different age groups analyzed:

v’ 20-40 years: MRE = 3.65 £ 1.56 mm
v' 40-60 years: MRE =4.38 £ 2.00 mm
v' 60-90 years: MRE =4.38 £ 0.81 mm

o ANOVA test showed no significant group-wise difference (p = 0.07)

« CABLD-generated inter-landmark distances for brain disease biomarkers

o Support vector machines on 10-fold cross-validation.
o Detection of Parkinson’s disease (PPMI dataset): F1 score = 81.2 + 8.8%
o Detection of Alzheimer’s disease (ADNI dataset): F1 score =93.5 £ 6.3%
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