

Zero-Shot Text-Guided Graphics Program Synthesis

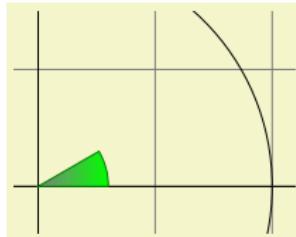
Jonas Belouadi Eddy Ilg Margret Keuper Hideki Tanaka Masao Utiyama

Raj Dabre Steffen Eger Simone Ponzetto

University of Mannheim University of Technology Nuremberg NICT

Background

- Graphics programming languages offer advantages over low-level vector and raster image formats by representing visuals as high-level programs.

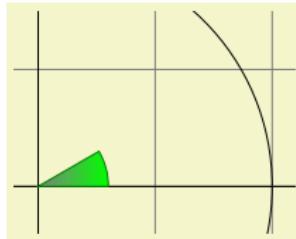


```
\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (1cm);
\shadedraw[left color=gray,right color=green, draw=green!50!black]
(0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
\end{tikzpicture}
```

Source: <https://tikz.dev>

Background

- Graphics programming languages offer advantages over low-level vector and raster image formats by representing visuals as high-level programs.
 - Preserve semantics, remain human-interpretable, and allow manual editing.

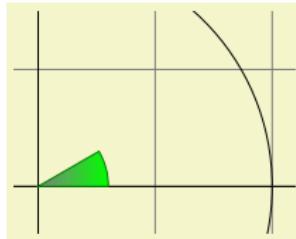


```
\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (1cm);
\shadedraw[left color=gray,right color=green, draw=green!50!black]
(0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
\end{tikzpicture}
```

Source: <https://tikz.dev>

Background

- **Graphics programming languages** offer advantages over low-level vector and raster image formats by representing visuals as **high-level** programs.
 - Preserve semantics, remain human-interpretable, and allow manual editing.
- These properties are valuable to the **scientific research community**, where specialized languages like **TikZ** (and many others) are popular.

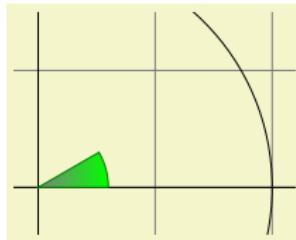


```
\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (1cm);
\shadedraw[left color=gray,right color=green, draw=green!50!black]
(0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
\end{tikzpicture}
```

Source: <https://tikz.dev>

Background

- Graphics programming languages offer advantages over low-level vector and raster image formats by representing visuals as high-level programs.
 - Preserve semantics, remain human-interpretable, and allow manual editing.
- These properties are valuable to the scientific research community, where specialized languages like **TikZ** (and many others) are popular.
- Graphics programming languages come with a steep learning curve motivating automated synthesis approaches (e.g., with text-guidance).

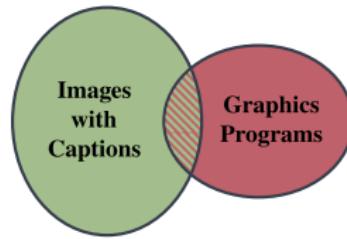


```
\begin{tikzpicture}[scale=3]
\clip (-0.1,-0.2) rectangle (1.1,0.75);
\draw[step=.5cm,gray,very thin] (-1.4,-1.4) grid (1.4,1.4);
\draw (-1.5,0) -- (1.5,0);
\draw (0,-1.5) -- (0,1.5);
\draw (0,0) circle (1cm);
\shadedraw[left color=gray,right color=green, draw=green!50!black]
(0,0) -- (3mm,0mm) arc (0:30:3mm) -- cycle;
\end{tikzpicture}
```

Source: <https://tikz.dev>

The Problem

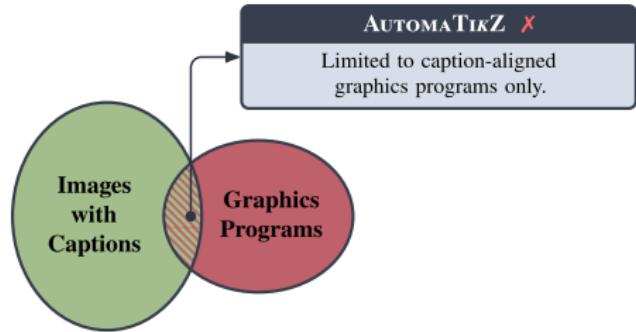
Although a **large pool** of potential training data exists for, current approaches are **restricted to subsets** based on **input modality** and **training setup**.



The Problem

Although a **large pool** of potential training data exists for, current approaches are **restricted to subsets** based on **input modality** and **training setup**.

AUTOMATIKZ supports text-guidance but requires graphics programs paired with captions for training (scarce) resulting in limited performance.

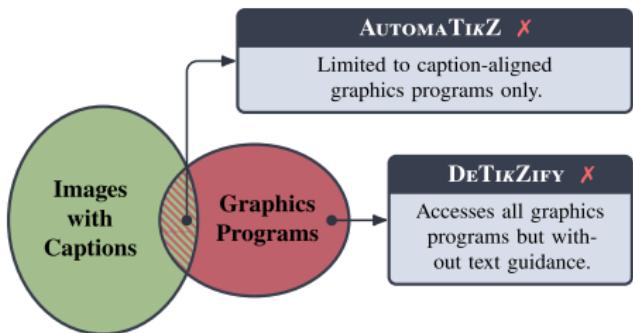


The Problem

Although a **large pool** of potential training data exists for, current approaches are **restricted to subsets** based on **input modality** and **training setup**.

AUTOMATIKZ supports text-guidance but requires graphics programs paired with captions for training (scarce) resulting in limited performance.

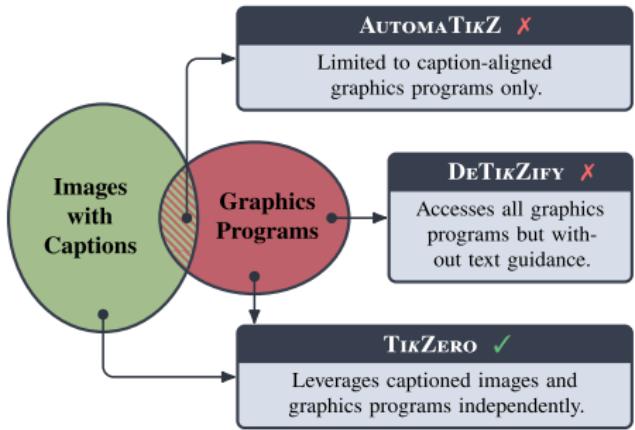
DETICKIFY generates programs from images (**inverse graphics**) with self-supervised training (can use lots of training data) but creating these visual inputs remains cumbersome



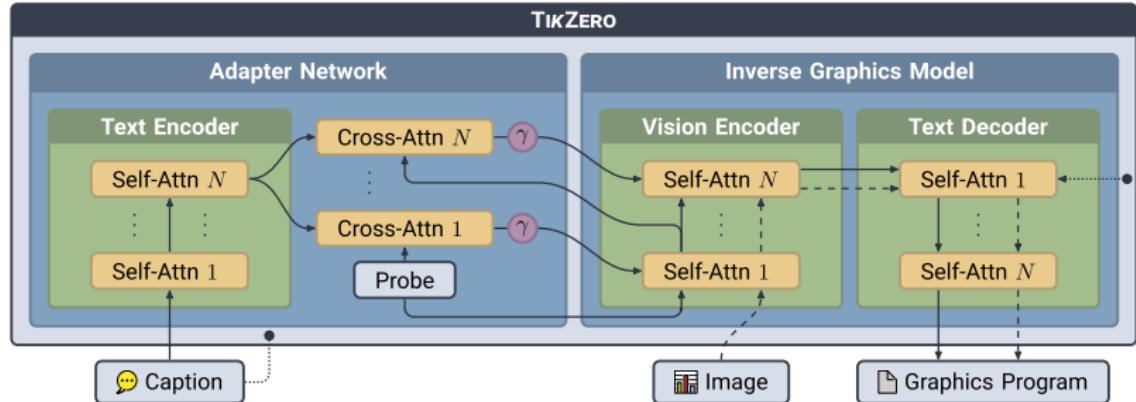
Our TIKZERO approach

Idea

We **decouple** graphics program generation from text understanding, enabling **independent training** on graphics programs and captioned images without requiring paired data. We call our approach **TIKZERO**.

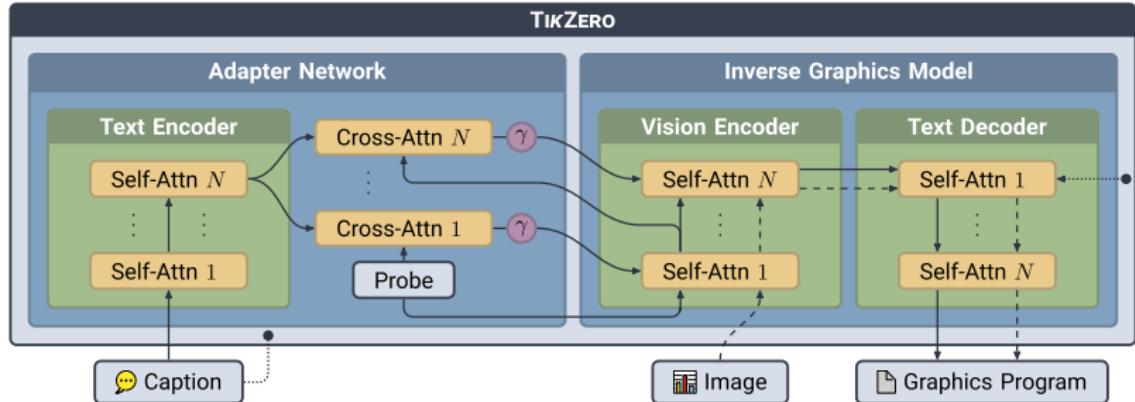


Architecture



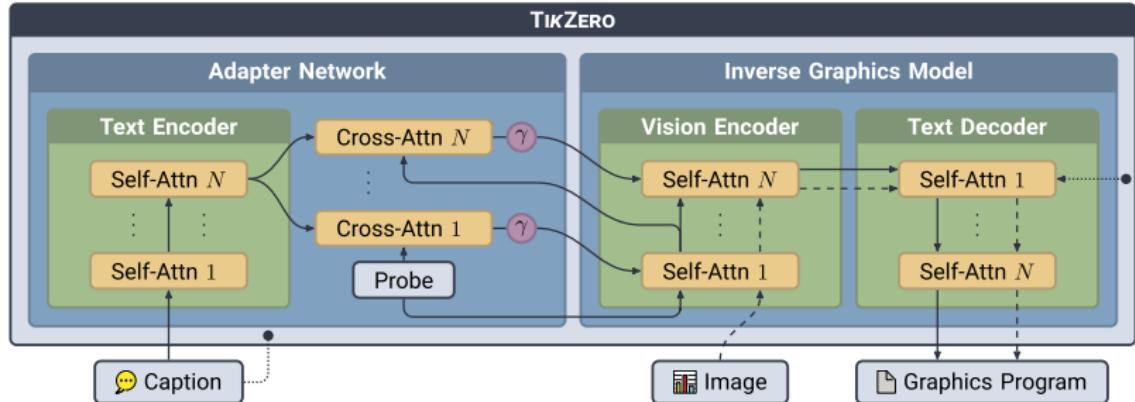
1. We train an **inverse graphics model** conditioned on image patch embeddings from a vision encoder (akin to DETIKZIFY).

Architecture



1. We train an **inverse graphics model** conditioned on image patch embeddings from a vision encoder (akin to DETIKZIFY).
2. We then train an **adapter network** that generates **synthetic image patch embeddings** from **captions**. This adapter training relies solely on captioned images, effectively circumventing resource limitations.

Architecture



1. We train an **inverse graphics model** conditioned on image patch embeddings from a vision encoder (akin to DETIKZIFY).
2. We then train an **adapter network** that generates **synthetic image patch embeddings** from **captions**. This adapter training relies solely on captioned images, effectively circumventing resource limitations.
3. Later, we combine this approach with **end-to-end fine-tuning** (TIKZERO+).

Training Data

Inverse Graphics Model Training Data

We systematically extract **TikZ** graphics programs from online sources. Whenever possible we also extract **captions** to support our claims. From over **450k** instances, fewer than **170k** include captions, underscoring the challenges discussed.

Training Data

Inverse Graphics Model Training Data

We systematically extract **TikZ** graphics programs from online sources. Whenever possible we also extract **captions** to support our claims. From over **450k** instances, fewer than **170k** include captions, underscoring the challenges discussed.

Adapter Training Data

We leverage the **6.4 million** scientific caption-image pairs from ARXIVCAP for adapter training.

Automatic Evaluation

We employ the following automatic **evaluation metrics** for quantitative evaluation:

Automatic Evaluation

We employ the following automatic **evaluation metrics** for quantitative evaluation:

Image Similarity DREAMSIM (DSIM); Kernel Inception Distance (KID)

Automatic Evaluation

We employ the following automatic **evaluation metrics** for quantitative evaluation:

Image Similarity DREAMSIM (DSIM); Kernel Inception Distance (KID)
Caption Similarity CLIPSCORE (CLIP)

Automatic Evaluation

We employ the following automatic **evaluation metrics** for quantitative evaluation:

Image Similarity DREAMSIM (DSIM); Kernel Inception Distance (KID)

Caption Similarity CLIPSCORE (CLIP)

Code Similarity CRYSTALBLEU (cBLEU); T_EX Edit Distance (TED)

Automatic Evaluation

We employ the following automatic **evaluation metrics** for quantitative evaluation:

Image Similarity DREAMSIM (DSIM); Kernel Inception Distance (KID)

Caption Similarity CLIPSCORE (CLIP)

Code Similarity CRYSTALBLEU (cBLEU); T_EX Edit Distance (TED)

Efficiency Mean Token Efficiency (MTE)

Automatic Evaluation

We employ the following automatic **evaluation metrics** for quantitative evaluation:

Image Similarity DREAMSIM (DSIM); Kernel Inception Distance (KID)

Caption Similarity CLIPSCORE (CLIP)

Code Similarity CRYSTALBLEU (cBLEU); T_EX Edit Distance (TED)

Efficiency Mean Token Efficiency (MTE)

Mean Similarity average of the above (AVG)

Results

Models	DSIM \uparrow	KID \downarrow	CLIP \uparrow	cBLEU \uparrow	TED \downarrow	MTE \uparrow	AVG \uparrow
IDEFICS 3 (8B)	45.475	11.426	14.327	0.656	63.175	69.558	66.628
AUTOMATIKZ (13B)	46.033	1.294	3.955	0.386	62.24	85.866	63.093
AUTOMATIKZ _{v2} (VLM)	38.313	33.203	0.775	0.328	76.985	21.595	0.0
AUTOMATIKZ _{v2} (LLM)	50.548	3.491	15.766	0.658	62.307	81.775	82.375
TIKZERO	52.829	5.103	10.051	1.603	65.51	82.291	85.599

- On average, TIKZERO **outperforms** AUTOMATIKZ_{v2} (baseline trained on supervised subset of our data) and additional baselines.

Additional Results (TIKZERO+)

Models	DSIM \uparrow	KID \downarrow	CLIP \uparrow	cBLEU \uparrow	TED \downarrow	MTE \uparrow	AVG \uparrow
QWEN _{2.5} CODER (32B)	54.473	5.493	24.87	0.285	59.856	97.269	48.593
GPT-4o	56.464	2.844	31.787	0.327	58.511	97.675	79.019
TIKZERO	52.829	5.103	10.051	1.603	65.51	82.291	14.658
TIKZERO+	56.295	1.831	24.177	1.988	59.008	93.058	87.043

- TIKZERO+ outperforms TIKZERO by a huge margin showing that subsequent supervised fine-tuning is beneficial.

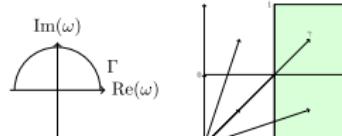
Additional Results (TIKZERO+)

Models	DSIM \uparrow	KID \downarrow	CLIP \uparrow	cBLEU \uparrow	TED \downarrow	MTE \uparrow	AVG \uparrow
QWEN _{2.5} CODER (32B)	54.473	5.493	24.87	0.285	59.856	97.269	48.593
GPT-4o	56.464	2.844	31.787	0.327	58.511	97.675	79.019
TIKZERO	52.829	5.103	10.051	1.603	65.51	82.291	14.658
TIKZERO+	56.295	1.831	24.177	1.988	59.008	93.058	87.043

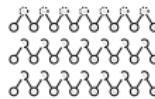
- TIKZERO+ outperforms TIKZERO by a huge margin showing that subsequent supervised fine-tuning is beneficial.
- It now also outperforms GPT-4o and other much larger and commercial models on average and comes close on key metrics DREAMSIM and CLIPSCORE.

Examples

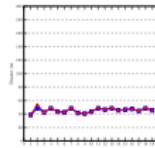
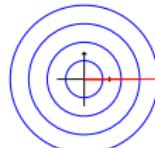
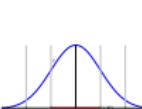
AUTOMATIKZ_{v2} ✗



3D contour plot of a loss function.

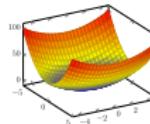
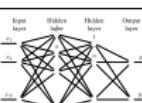


A multi-layer perceptron with two hidden layers.



Gaussian probability density function (blue) with markers showing one standard deviation (red).

TIKZERO+ ✓



Qualitative comparison of our **TIKZERO** approach (last two columns) and the end-to-end trained baseline **AUTOMATIKZ_{v2}**. Our method generates outputs that **more closely** follow the given captions.

Interested? There's more!

In our paper, we **evaluate additional baselines**, including reasoning models; uncover that end-to-end trained **baselines prioritize copying strings** over better visuals; and **evaluate the inverse graphics performance** of our model. Our code, datasets, and select models are **publicly available**.