

Motivation & Objective

Prior stereo matching models struggled to generalize across diverse input conditions. Attempts to scale models often led to inefficiencies, revealing a need for a more adaptable solution.

We aim to develop a unified architecture that achieves

- Input Scalability:** Robust performance across varying image resolutions and disparity ranges.
- Model Scalability:** Consistent performance gains with increased model capacity.

Our Key Contributions

Scalable Global Matching Architecture

A multi-resolution Transformer design that scales effectively with both input complexity and model size, and is fully trainable from scratch.

Accurate & Reliable Depth Estimation

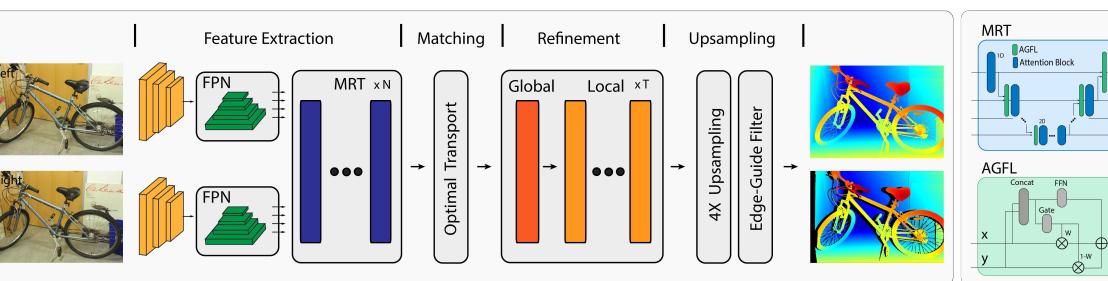
A novel PMC loss function enhances disparity precision, while joint confidence and occlusion estimation ensures reliable depth maps.

New State-of-the-Art Performance

Our method, S²M², achieves **top-ranked** performance on challenging real-world benchmarks, including Middlebury v3 and ETH3D.

Proposed Method:

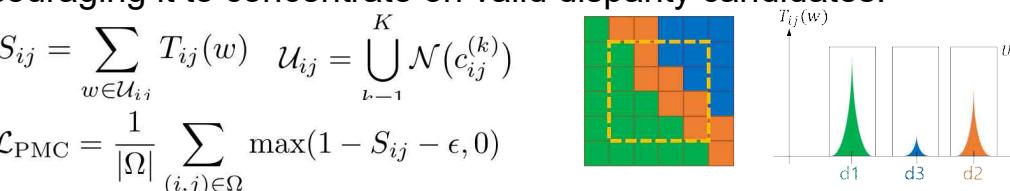
Architecture


Our proposed model revitalizes the global matching paradigm.

Powerful Multi-scale Feature Extraction

- Multi-Resolution Transformer (MRT):** Employs a hybrid attention strategy (horizontal at high-res, 2D at low-res) to balance performance and computational cost.
- Adaptive Gated Fusion Layer (AGFL):** Acts as a dynamic gate that selectively fuses features across different scales, ensuring robust information exchange.

Robust Global Matching


Utilizes Optimal Transport to find a globally consistent matching plan from all possible correspondences.

Loss Function

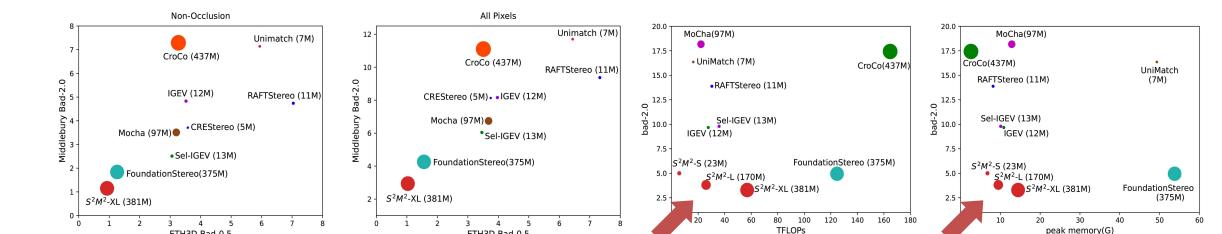
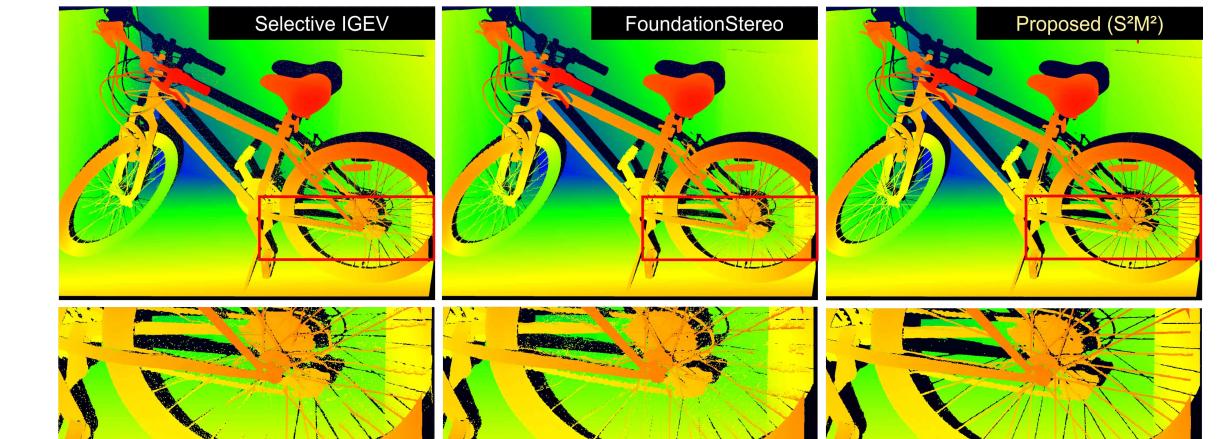
Our model is trained with a composite loss function that combines standard L1 losses with our novel **Probabilistic Mode Concentration (PMC)** loss.

- Since global matching is performed on 1/4-downsampled features, a more direct mechanism is required to guide the matching probabilities.
- PMC loss directly regularizes the matching probability distribution, encouraging it to concentrate on valid disparity candidates.

The final loss function integrates disparity, confidence, occlusion, and PMC losses, each weighted by a dedicated hyperparameter.

$$\mathcal{L} = \lambda_D \mathcal{L}_D + \lambda_O \mathcal{L}_O + \lambda_C \mathcal{L}_C + \lambda_{\text{PMC}} \mathcal{L}_{\text{PMC}}$$

Experiments



Ablation Study with Our Synthetic Benchmark

Model Configuration	Training Strategy	Disparity Metrics		Auxiliary Metrics			
		Ch Ntr	AGFL	PMC Loss	EPE	Bad-2.0	Occ AP
128 1	No	No		0.489	1.974	0.973	0.977
128 1	Yes	No		0.496	1.601	0.973	0.978
128 1	Yes	Yes		0.451	1.490	0.974	0.978
128 3	Yes	Yes		0.388	1.281	0.974	0.978
256 1	Yes	Yes		0.320	0.928	0.975	0.979
256 3	Yes	No		0.299	0.810	0.976	0.980
256 3	Yes	Yes		0.254	0.750	0.976	0.980

Iterations	GFLOPs	Disparity Metrics		Auxiliary Metrics	
		EPE	Bad-2.0	Occ AP	Conf AP
0	305	0.666	2.768	0.961	0.977
1	427	0.470	1.658	0.974	0.977
2	537	0.479	1.526	0.974	0.977
3	647	0.451	1.490	0.974	0.978

Benchmark & Model Scalability

Model	Non-Occlusion				All Pixels				Mem(G)	TFLOPs	Param(M)	
	EPE	RMS	Bad-0.5	Bad-1.0	Bad-2.0	Bad-4.0	EPE	RMS	Bad-0.5	Bad-1.0	Bad-2.0	Bad-4.0
CoEx [2]	20.17	63.95	38.78	27.82	21.06	16.75	37.55	103.82	46.95	36.78	29.85	24.87
BGNet+ [41]	14.04	42.84	43.97	29.55	20.63	14.82	30.31	88	50.98	37.85	29.11	22.87
RAFT [20]	20.41	48.12	24.41	17.71	13.87	11.32	33.07	76.51	33.31	21.84	18.31	8.18
fastAVC [43]	15.09	48.39	36.73	24.77	17.69	13.31	32.50	93.99	45.57	34.61	27.34	8.01
UniMatch [45]	6.46	17.54	55.77	31.11	16.35	10.66	13.96	37.93	61.77	40.05	25.82	18.54
CroCo [39]	15.64	35.66	33.82	23.71	17.43	13.48	24.99	57.23	40.70	30.96	24.31	19.57
IGEV [42]	7.03	21.16	23.04	13.86	9.66	7.13	15.42	42.85	31.11	22.17	17.30	13.82
MC [11]	35.56	73.77	32.48	26.72	23.08	20.56	56.07	112.67	41.12	35.47	31.46	28.29
NMRF [14]	40.88	82.83	58.67	43.24	36.66	33.07	62.04	121.41	64.06	50.57	44.28	40.31
Sel-IGEV [37]	9.23	25.92	22.37	14.09	9.79	7.36	18.23	48.79	30.06	21.82	16.86	13.49
MoCha [5]	40.37	102.65	26.9	21.62	18.17	15.73	59.75	141.19	35.34	29.91	22.82	12.87
S ² M ² -S (+1Mtr)	6.45	16.36	19.10	11.46	7.63	5.39	11.39	31.06	26.94	18.93	14.15	10.78
S ² M ² -L (+1Mtr)	3.05 ¹	10.17 ¹	14.92	8.72	5.58	3.74	8.21 ¹	25.92	23.48	16.53	12.21	9.12
FoundationStereo [40] (+2Mtr)	4.60	11.27	10.96 ³	7.23 ³	4.95 ³	3.49 ³	8.26	23.04 ³	18.42 ³	13.98 ³	10.73 ³	53.78
S ² M ² -S (+2Mtr)	4.82	10.83	13.13	7.62	5	3.57	9.14	26.32	20.75	14.55	10.83	8.26
S ² M ² -L (+2Mtr)	2.99 ²	8.72 ²	10.60 ²	6.00 ²	3.80 ²	2.54 ²	7.20 ²	22.40 ²	18.11 ²	12.72 ²	9.39 ²	6.96 ²
S ² M ² -XL (+2Mtr)	2.30 ¹	7.95 ¹	9.22 ¹	5.15 ¹	3.29 ¹	2.18 ¹	6.2 ¹	20.58 ¹	16.51 ¹	11.60 ¹	8.56 ¹	6.36 ¹

