

CleanPose: Category-Level Object Pose Estimation via Causal Learning and Knowledge Distillation

Xiao Lin¹

Yun Peng¹

Liuyi Wang¹

Minghao Zhu¹

Chengju Liu^{1,2}

Qijun Chen^{1,2}

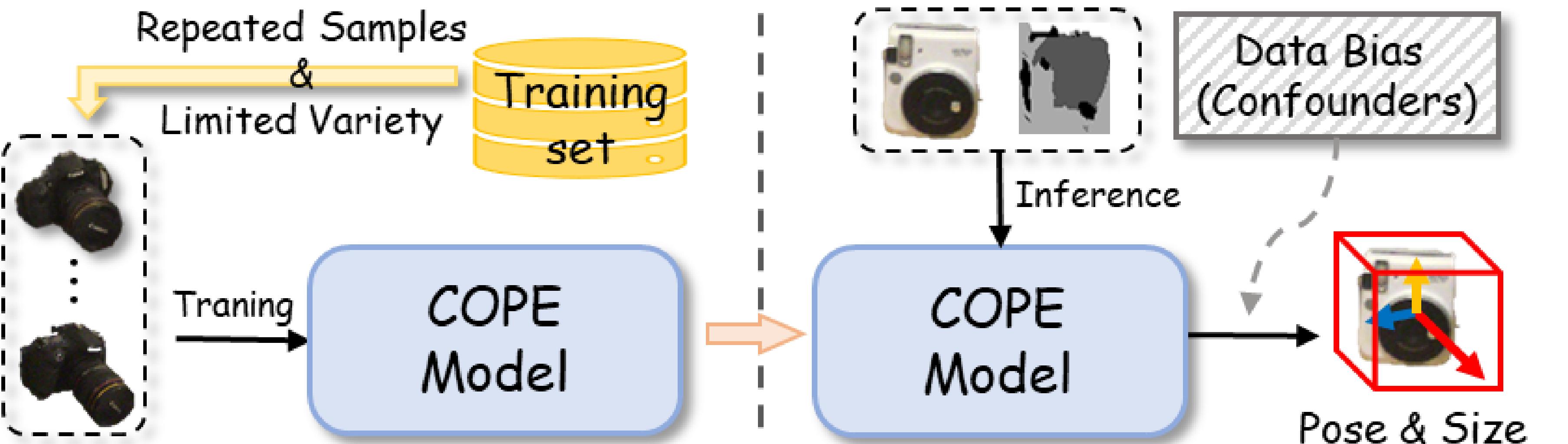
¹College of Electronic and Information Engineering, Tongji University, Shanghai, China

²State Key Laboratory of Autonomous Intelligent Unmanned Systems, China

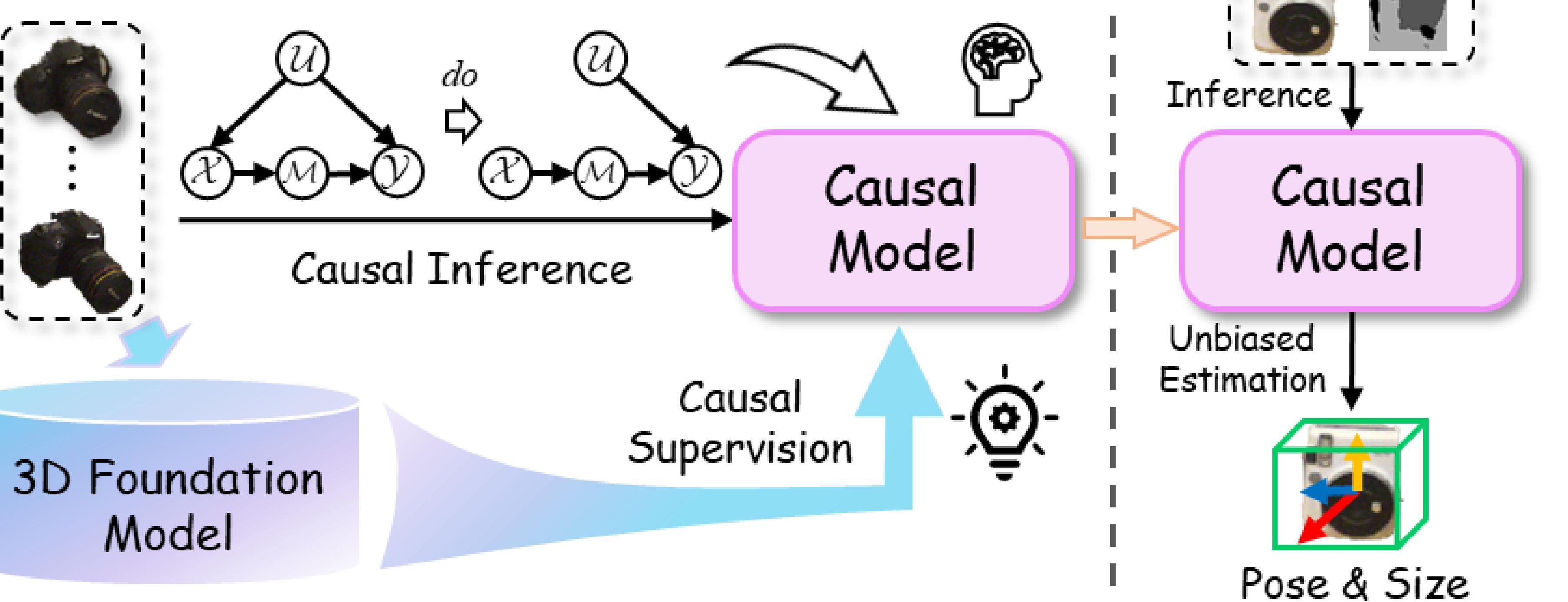
➤ Motivation

- The **inherent biases** are pervasive in current datasets, e.g., repeated training samples and limited pose variety, which may mislead COPE models to overfit to familiar object's appearance and poses during data fitting.
- The dataset's scale is still significantly constrained by the cost of 3D data annotation. Moreover, achieving a perfectly balanced dataset free of bias remains nearly impossible.
- Therefore, the extension of datasets does not fundamentally solve the hindrance, developing a causal COPE models that can effectively confront and alleviate biases becomes a primary challenge.

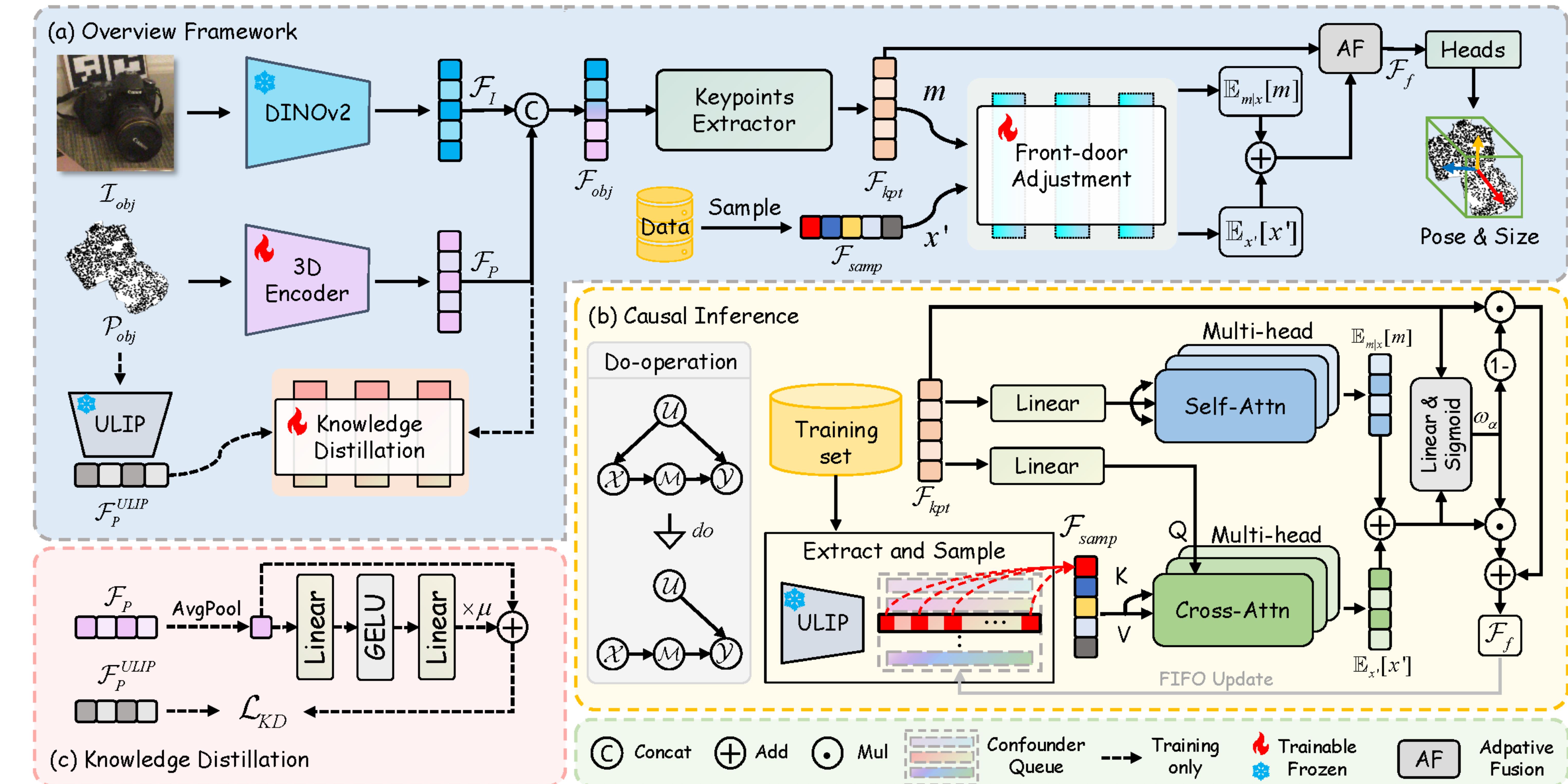
(a) Existing approaches affected by data bias



(b) Our proposed causal learning pipeline

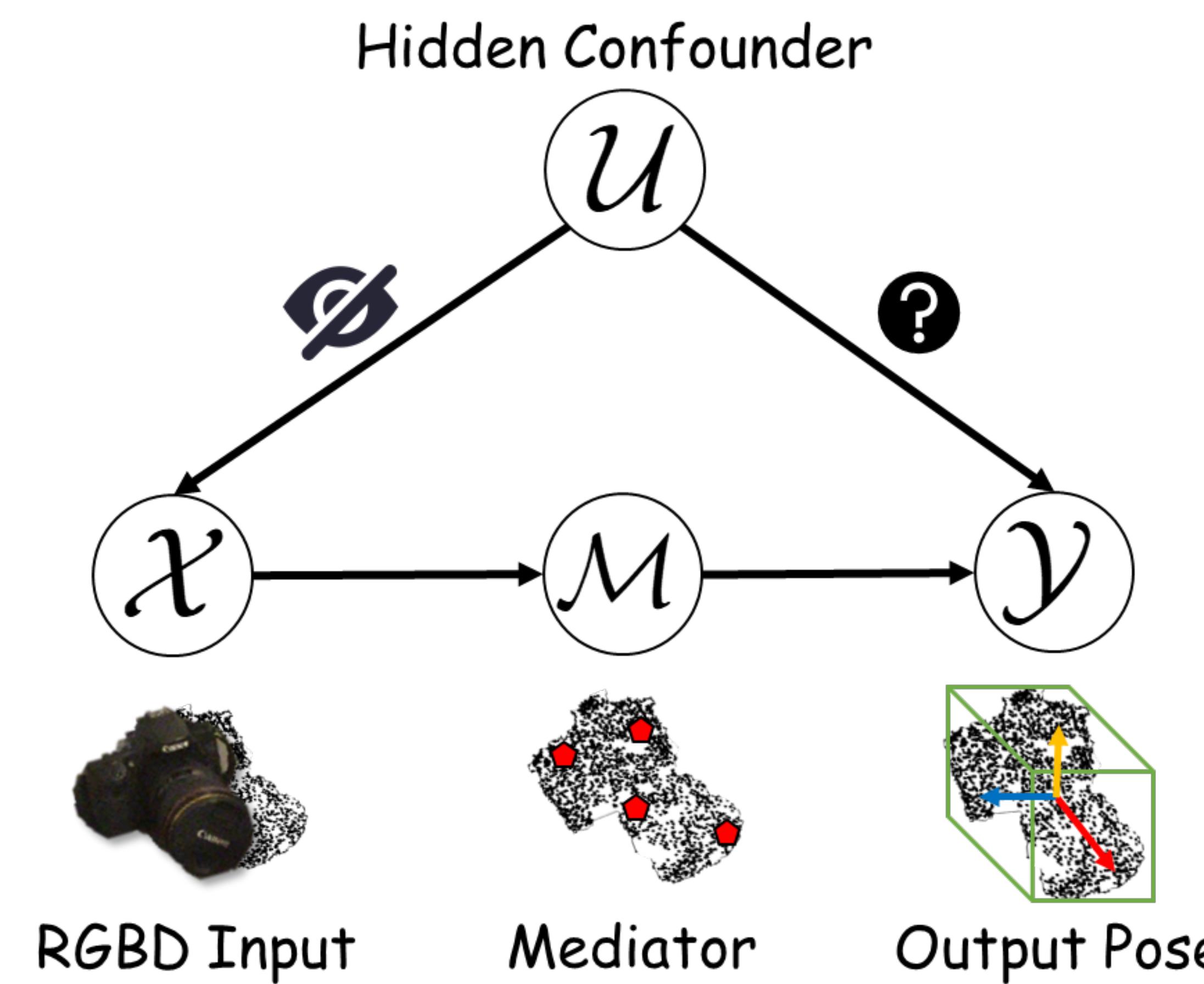


➤ Contributions



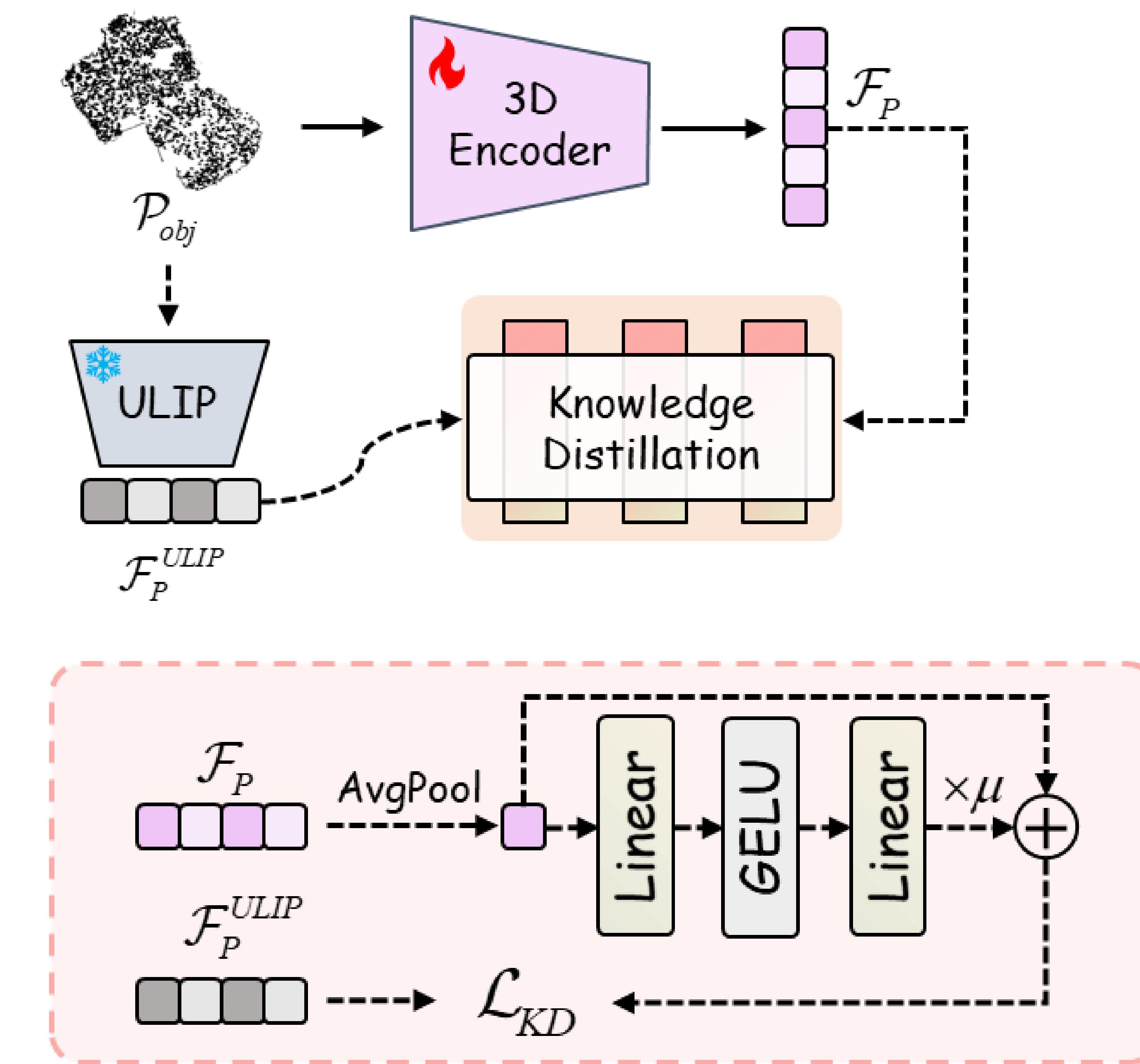
- For the first time, we propose to leverage **causal inference** and a residual-based **knowledge distillation** to alleviate the negative effects raised by confounders.

□ Structural Causal Model



- $\mathcal{X} \rightarrow \mathcal{M} \rightarrow \mathcal{Y}$ (front door path): Human first recognize the keypoints, and then determine the pose.
- $\mathcal{X} \leftarrow \mathcal{U} \rightarrow \mathcal{Y}$ (hidden confounders): The confounders are extraneous variables that influence both inputs and outputs.

□ Knowledge Distillation



$$\mathcal{L}_{KD} = \frac{1}{B} \sum_i^B \left\| \mathcal{F}_P^{ULIP} - \varphi \left(\widehat{\mathcal{F}}_P^{avg} \right) \right\|_2$$

□ Front-door Adjustment Causal Inference

$$P(Y, X, m, u) = P(u)P(m | X)P(Y | m, u)P(X | u)$$

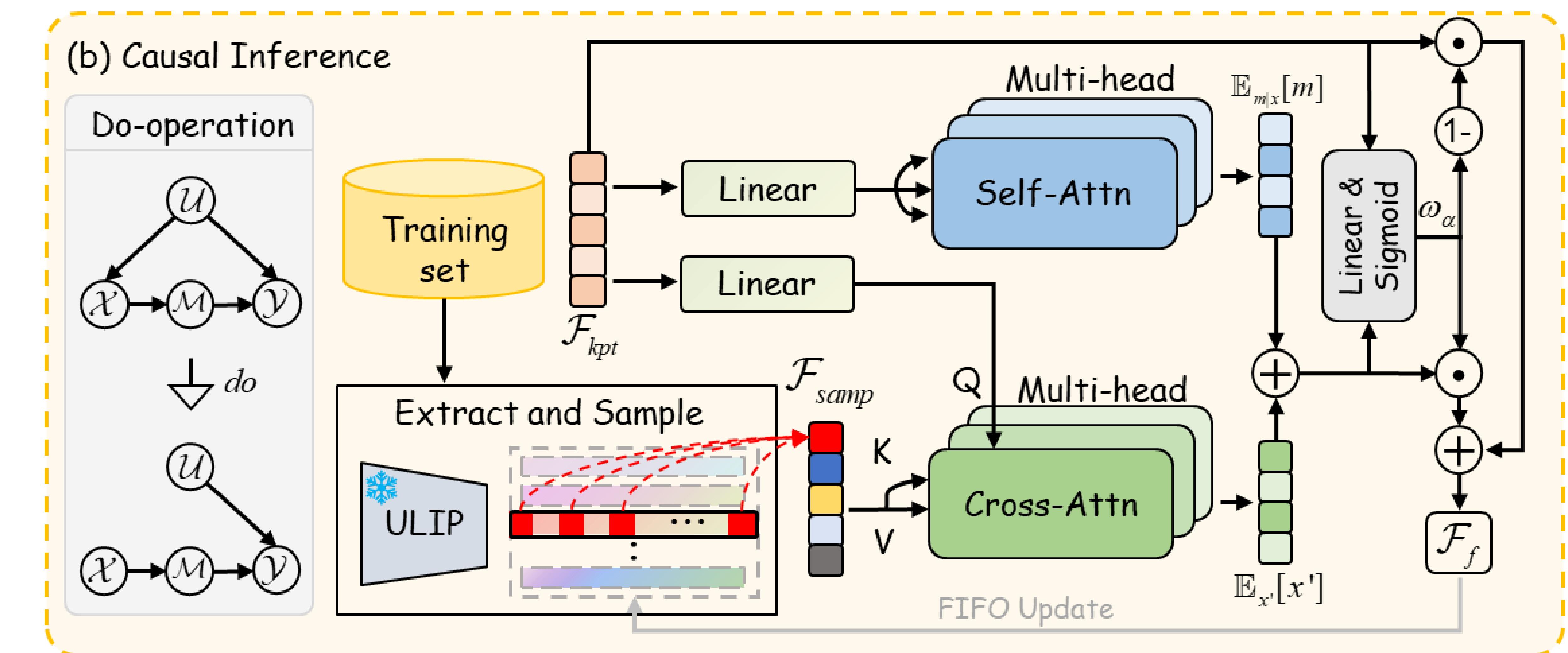
$$P(Y, m, u | do(X)) = P(u)P(m | X)P(Y | m, u)$$

$$P(Y | do(X)) = \sum_m P(m | X) \sum_u P(Y | m, u)P(u)$$

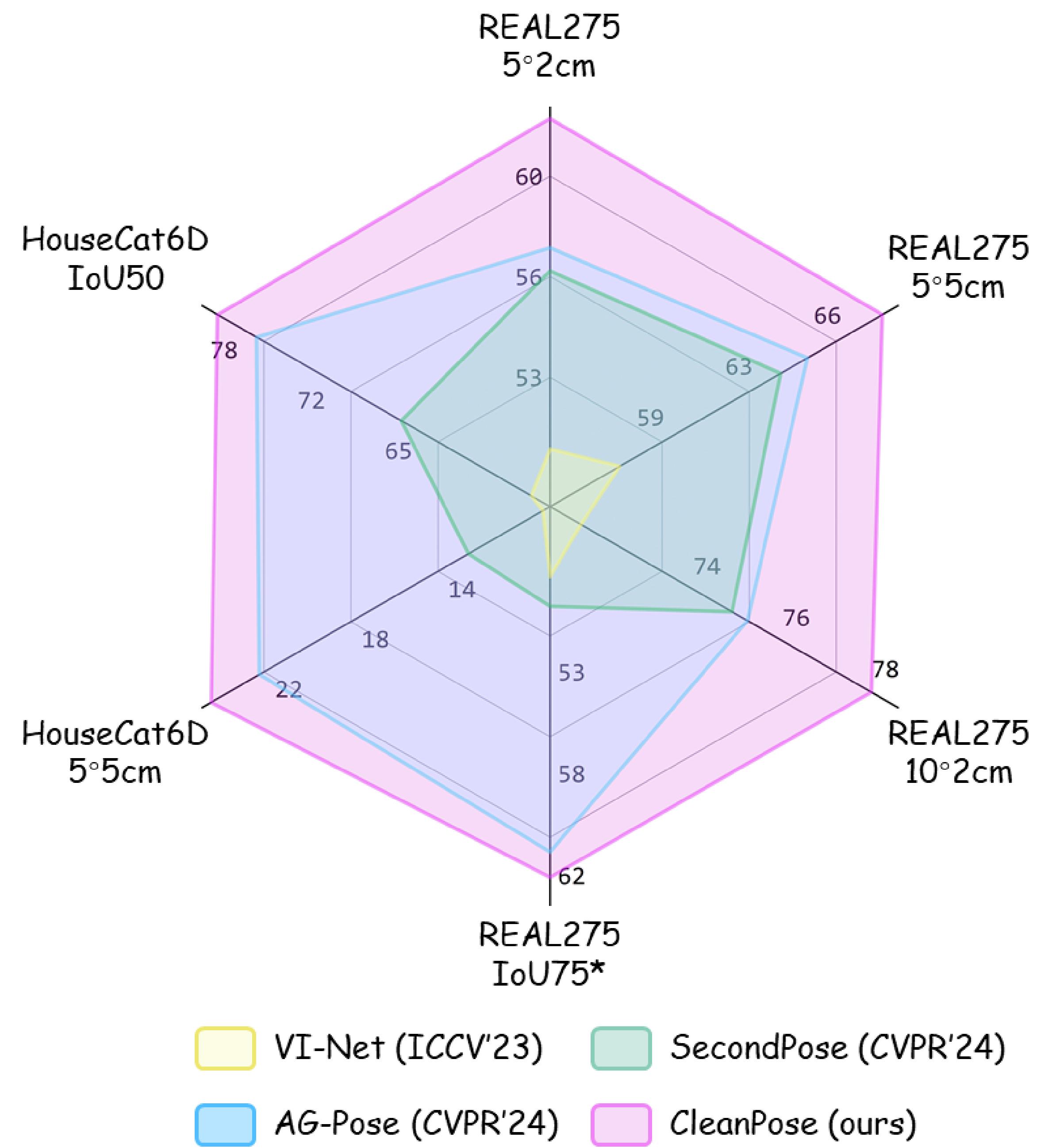
$$= \sum_m P(m | X) \sum_x \sum_u P(Y | m, u)P(u | X)P(X)$$

$$= \sum_{x'} P(x') \sum_m P(Y | m, x')P(m | X)$$

$$= \mathbb{E}_{x'} \mathbb{E}_{m|x} [P(Y | x', m)] = \mathbb{E}_{x'} [x'] + \mathbb{E}_{m|x} [m]$$



□ Quantitative Results

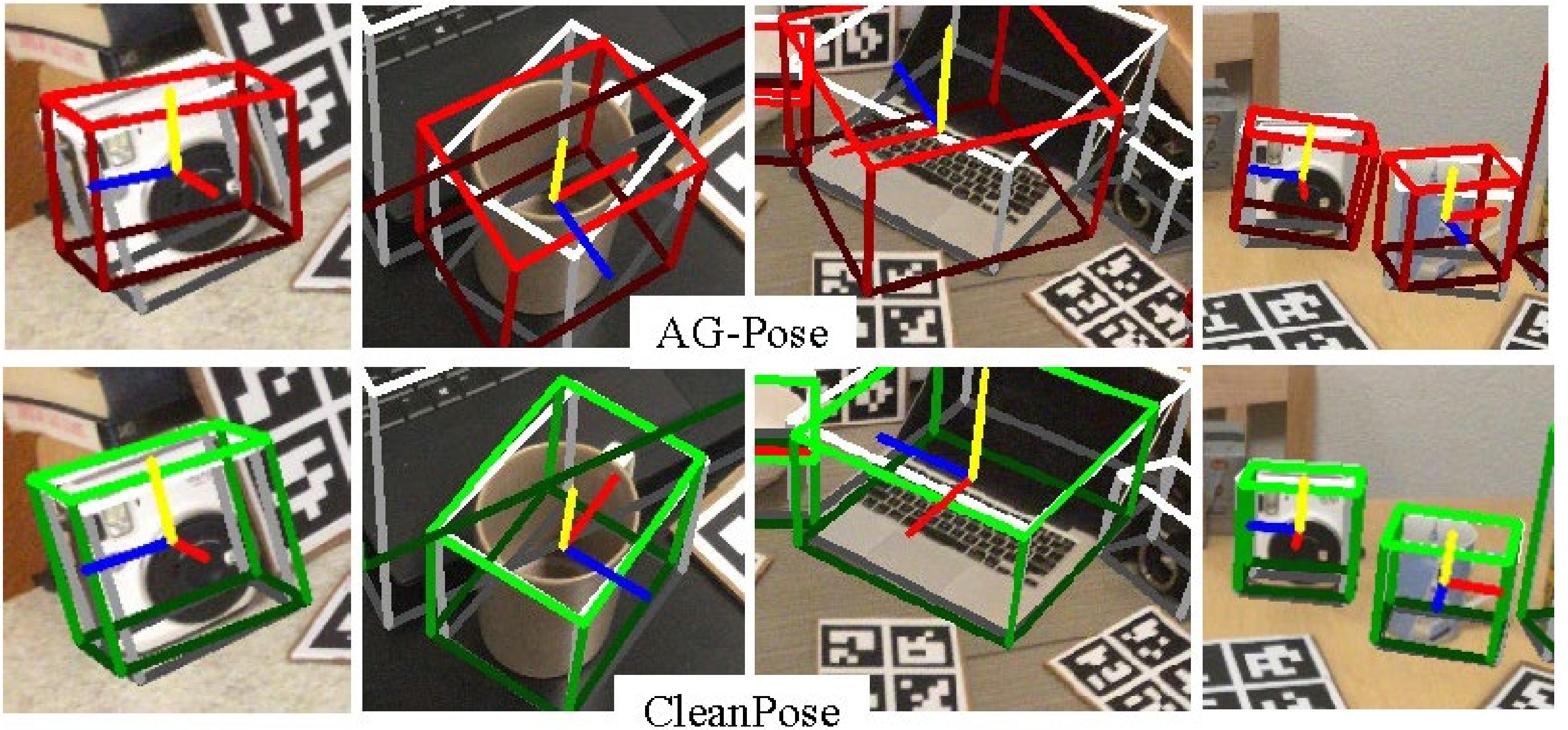


Methods	Venue/Source	Shape Prior	$IoU_{75}^* \uparrow$	$5^{\circ}2cm \uparrow$	$5^{\circ}5cm \uparrow$	$10^{\circ}2cm \uparrow$	$10^{\circ}5cm \uparrow$
DPDN[19]	ECCV'22	✓	54.0	46.0	50.7	70.4	78.4
MH6D[26]	TNNLS'24	✓	54.2	53.0	61.1	72.0	82.0
GCE-Pose[17]	CVPR'25	✓	-	<u>57.0</u>	<u>65.1</u>	<u>75.6</u>	86.3
HS-Pose[56]	CVPR'23	✗	39.1	45.3	54.9	68.6	83.6
VI-Net[20]	ICCV'23	✗	48.3	50.0	57.6	70.8	82.1
CLIPose[23]	TCSVT'24	✗	-	48.5	58.2	70.3	85.1
GenPose[52]	NeurIPS'23	✗	-	52.1	60.9	72.4	84.0
SecondPose[3]	CVPR'24	✗	49.7	56.2	63.6	74.7	86.0
AG-Pose[22]	CVPR'24	✗	<u>61.3</u>	<u>57.0</u>	64.6	75.1	84.7
CleanPose (ours)		✗	62.7	61.7	67.6	78.3	86.3

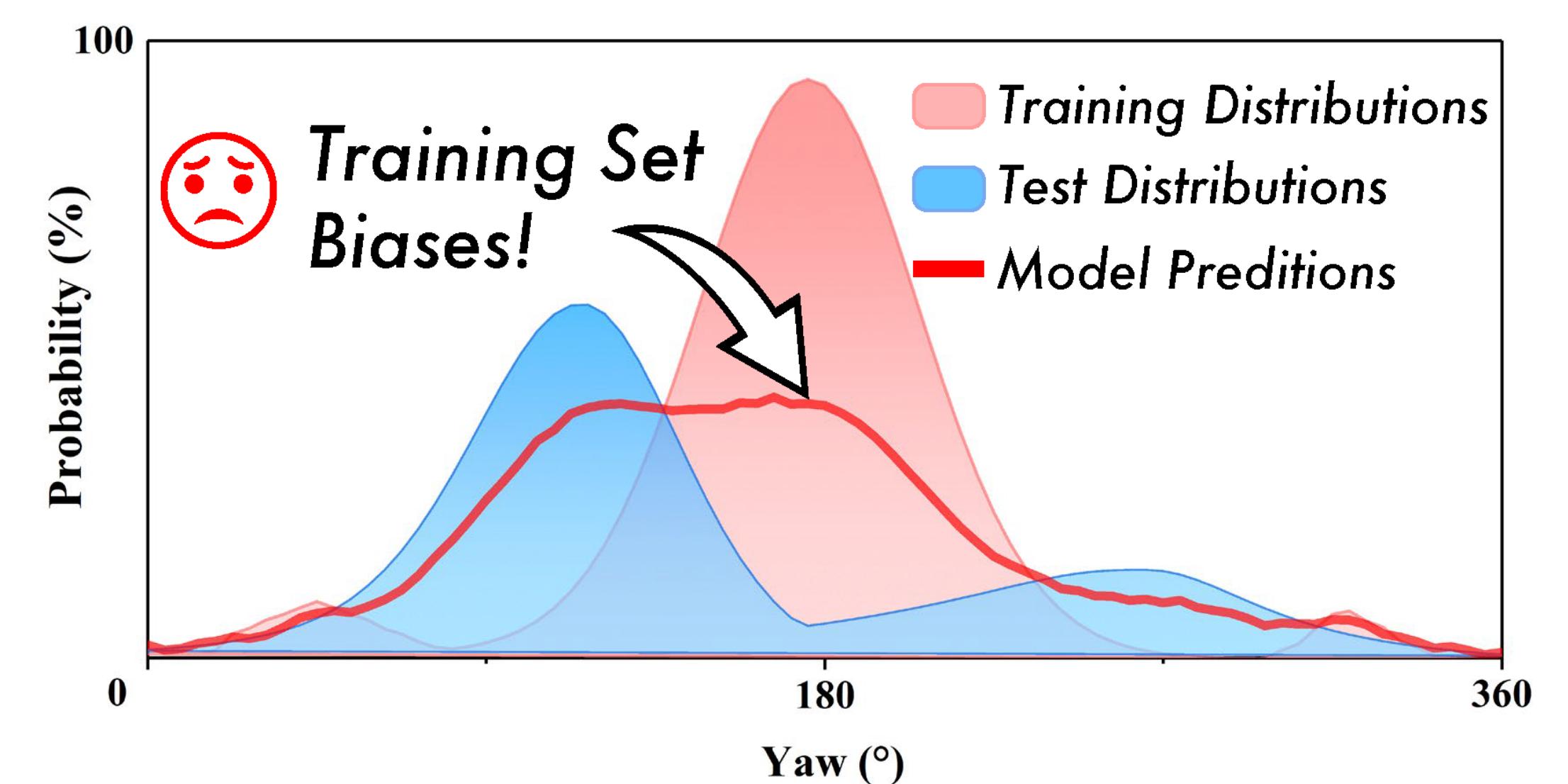
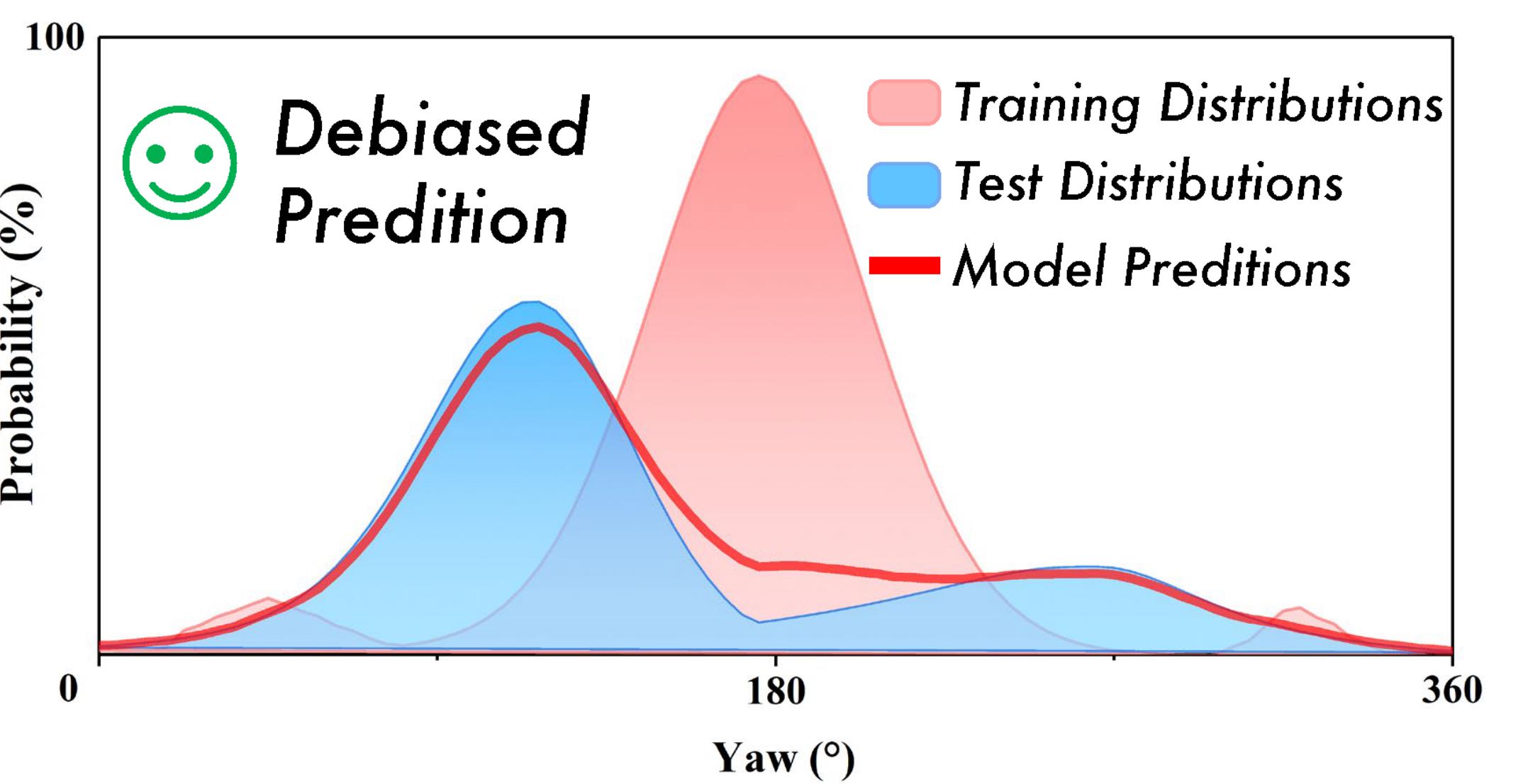
Methods	IoU_{75}^*	$5^{\circ}2cm$	$5^{\circ}5cm$	$10^{\circ}2cm$	$10^{\circ}5cm$
HS-Pose[56]	-	73.3	80.5	80.4	89.4
CLIPose[23]	-	74.8	82.2	82.0	91.2
GeoReF[57]	79.2	77.9	<u>84.0</u>	83.8	90.5
AG-Pose[22]	81.2	<u>79.5</u>	<u>83.7</u>	<u>87.1</u>	<u>92.6</u>
CleanPose (ours)	<u>80.7</u>	80.3	84.2	87.7	92.7

Methods	IoU_{25}	IoU_{50}	$5^{\circ}2cm$	$5^{\circ}5cm$	$10^{\circ}2cm$	$10^{\circ}5cm$
FS-Net[2]	74.9	48.0	3.3	4.2	17.1	21.6
GPV-Pose[4]	74.9	50.7	3.5	4.6	17.8	22.7
VI-Net[20]	80.7	56.4	8.4	10.3	20.5	29.1
SecondPose[3]	83.7	66.1	11.0	13.4	25.3	35.7
AG-Pose[22]	88.1	76.9	21.3	22.1	51.3	54.3
CleanPose (ours)	89.2	79.8	22.4	24.1	51.6	56.5

□ Qualitative Comparison



□ Illustration of Debiasing



- The qualitative results of AG-Pose and proposed CleanPose shows that our method achieves significantly higher precision.

- The predictions of baseline model are clearly biased toward the training set distributions, while the debiased model primarily unaffected.

➤ Conclusion and limitation

- We present CleanPose, **the first solution** that addresses the dataset biases in category-level pose estimation from the perspective of causal learning.
- We formulate the modeling of crucial causal variables and develop **a causal inference framework** in Category-level pose estimation task.
- We devise a residual knowledge distillation network to transfer unbiased semantics knowledge from 3D foundation model, providing comprehensive causal guidance to achieve unbiased estimation.
- Limitation: The investigation on the application of causal learning methods remains incomplete.

THANK YOU

Paper

Github Code

Acknowledgments: This work is supported by the National Natural Science Foundation of China under Grants (62233013, 62173248, 62333017, 624B2105).