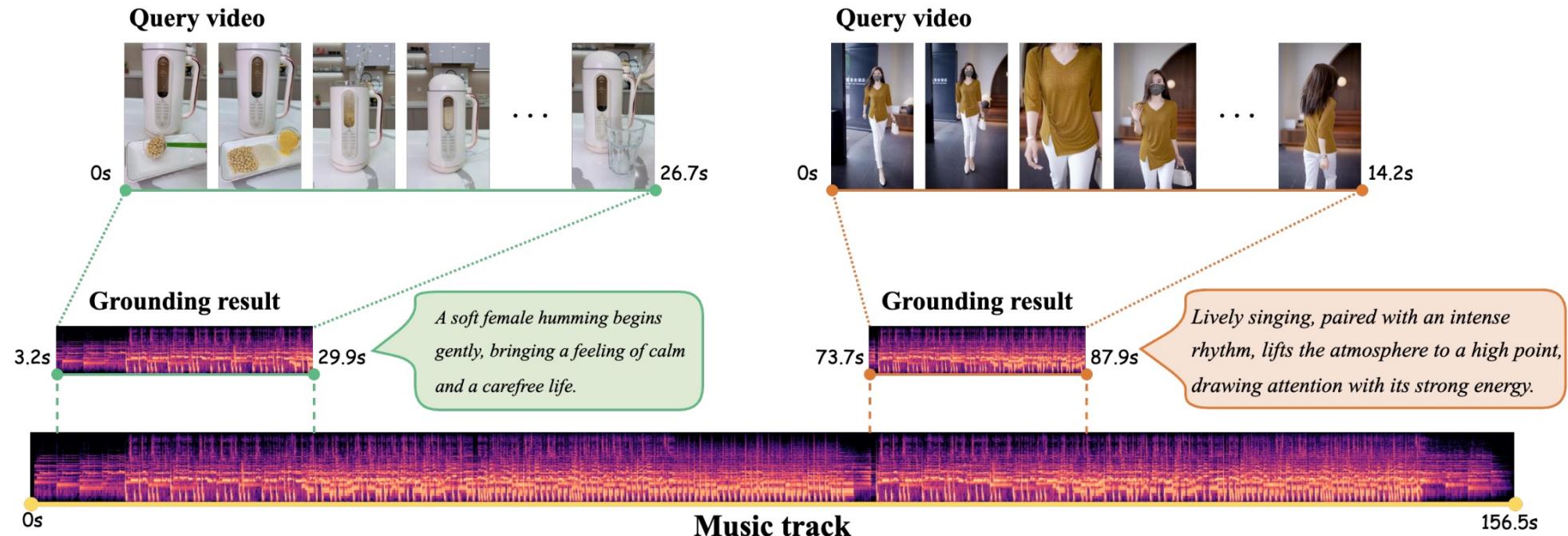


Music Grounding by Short Video

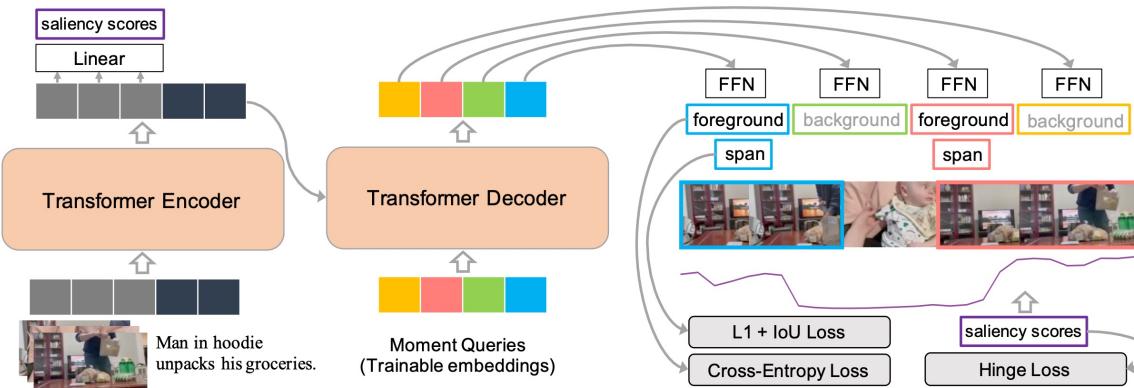
Zijie Xin¹, Minquan Wang², Jingyu Liu¹, Quan Chen², Ye Ma², Peng Jiang², Xirong Li¹

¹Renmin University of China, ²Kuaishou Technology


xinzie@ruc.edu.cn

- **Short videos + Music = More engaging:** Adding background music “helps complete a short video” – think of TikToks or YouTube Shorts with catchy songs.
- **Current practice is manual:** Creators pick a song and **manually trim** it to fit the video. This can be tedious and requires timing the music just right.
- **Previous research (V2MR):** Some systems can suggest a whole music track for a video (Video-to-Music Retrieval), but they **don't tell you which part** of the song to use.

➤ **The Gap:** Music tracks are usually much longer than short videos, so just getting a song isn't enough – you need the right moment. **How can we automate finding that perfect moment?**

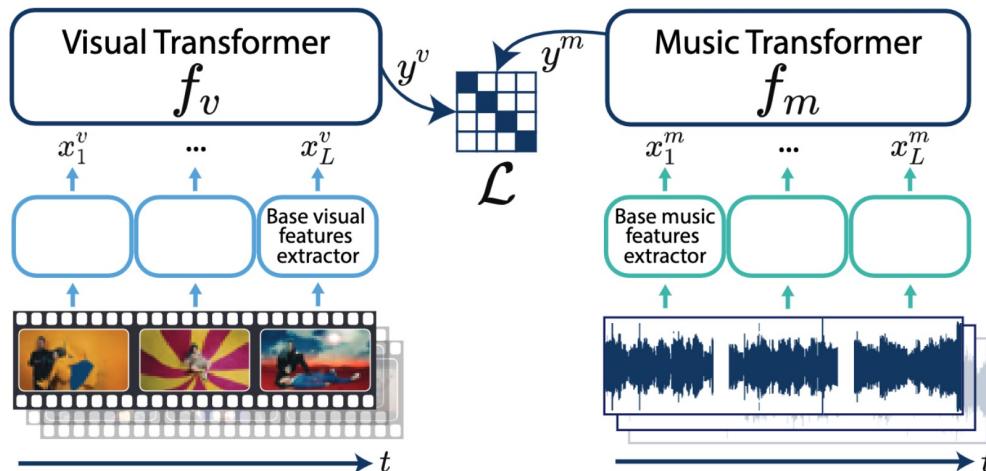


BGM Showcase Generated by our Model

More showcases can be seen in our project page: <https://rucmm.github.io/MGSV>

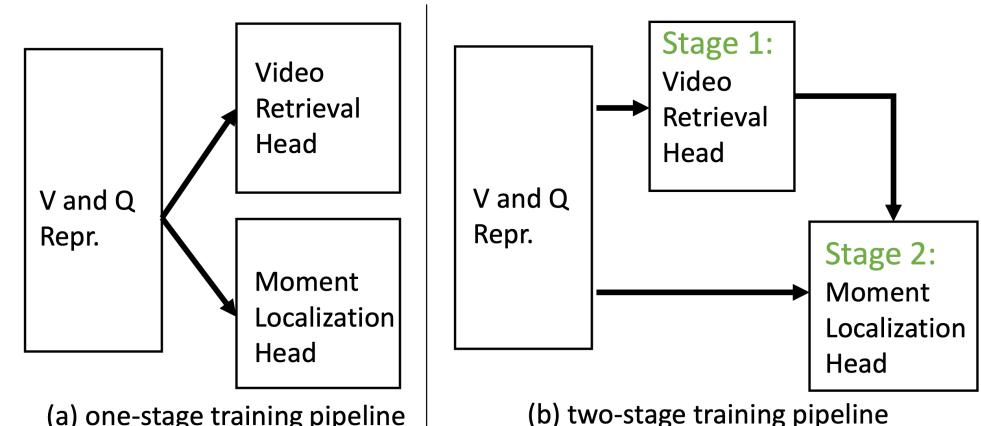
➤ Transformers-based Video Temporal Grounding

Moment-DETR


[1] Lei, et al. Detecting moments and highlights in videos via natural language queries. In NeurIPS, 2021.

Model	Unimodal Feat. Enhancement	Multimodal Feat. Fusion	Init. Content Token ϕ_0	Decoder
Moment-DETR[16]	$FC_{\times 2}$	$SA_{\times 2}$	0	$SA\text{-}CA_{\times 2}$
QD-DETR[23]	$FC_{\times 2}$	$CA_{\times 2}\text{+}SA_{\times 2}$	0	$SA\text{-}CA_{\times 2}$
QD-DETR+	$FC_{\times 2}$	$SA_{\times 2}$	0	$SA\text{-}CA_{\times 2}$
TR-DETR[26]	$FC_{\times 2}$	$VFR\text{+}CA_{\times 2}\text{+}SA_{\times 2}$	0	$SA\text{-}CA_{\times 2}$
TR-DETR+	$FC_{\times 2}$	$VFR\text{+}SA_{\times 2}$	0	$SA\text{-}CA_{\times 2}$
EaTR[14]	$FC_{\times 2}$	$SA_{\times 3}$	Target-modality features	$GF\text{+}SA\text{-}CA_{\times 2}$
UVCOM[30]	$FC_{\times 2}$	$Dual\text{-}CA_{\times 3}\text{+}DBIA\text{+}LRP\text{+}SA_{\times 3}$	Target-modality features	$SA\text{-}CA_{\times 3}$
UVCOM+	$FC_{\times 2}$	$DBIA\text{+}LRP\text{+}SA_{\times 3}$	Target-modality features	$SA\text{-}CA_{\times 3}$
<i>MaDe</i> (this paper)	$FC\text{+}SA$	$SA_{\times 2}$	Query-modality feature	$CA_{\times 6}$

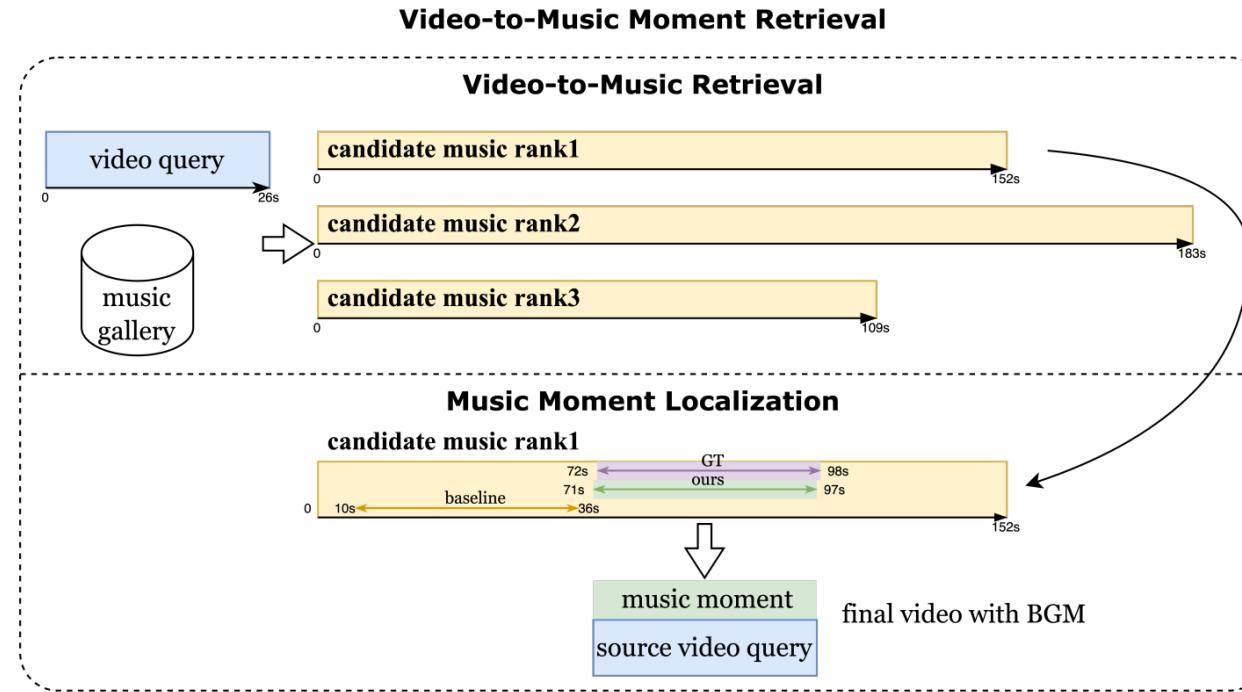
Key elements in current DETR-based models for video grounding



➤ Video-to-Music Retrieval

MVPt

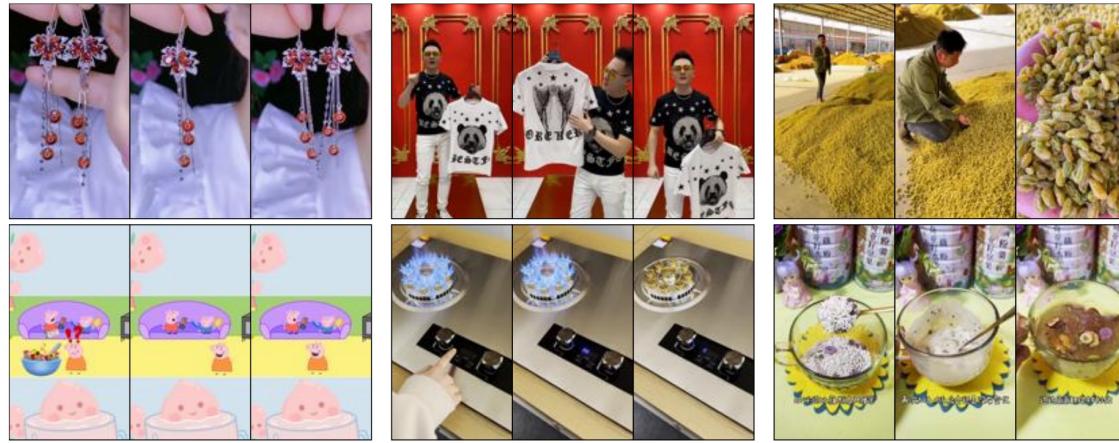
➤ Video Corpus Moment Retrieval


CONQUER

[1] Sur's, et al. It's time for artistic correspondence in music and video. In CVPR, 2022.

[2] Hou, et al. CONQUER: Contextual query-aware ranking for video corpus moment retrieval. In ACMMM, 2021.

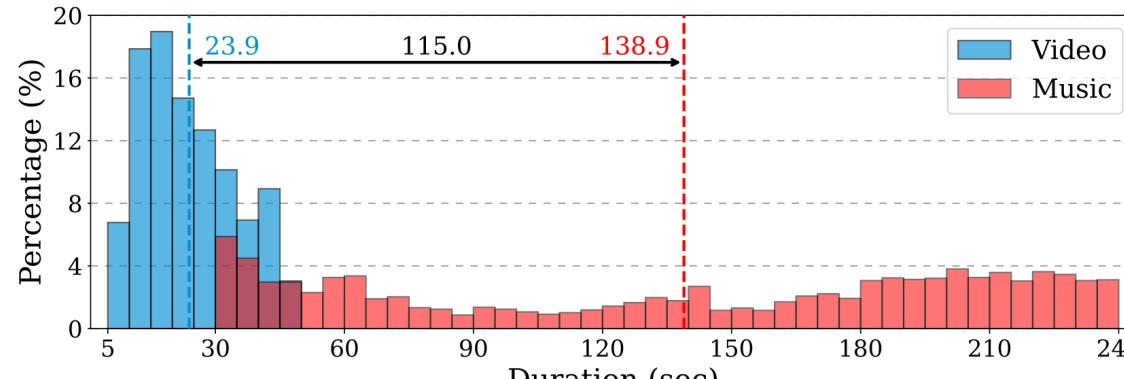
New Task - Music Grounding by Short Video


- ✓ **New Task (MGSV):** “Music Grounding by Short Video” means given a short video, find **the exact segment** (start and end time) of a music track that best fits the video.
- ✓ **Difference from previous approach:** Unlike just retrieving a whole song, MGSV finds **which part** of the song to use, bridging the gap between track selection and manual editing.

Dataset Construction – MGSV-EC

- **New Benchmark “MGSV-EC”**: To train and evaluate this new task, we built a large dataset called **MGSV-EC (E-commerce)**. It has $\sim 53,000$ short videos, each paired with a specific music segment (total **35,000 unique music clips** from **4,000 songs**).
- **Data source**: These video–music pairs come from an E-commerce video creation platform. Each video is associated with a **BGM editing log**, indicating **which music track** was used and **which part of the music** was adopted as the BGM.

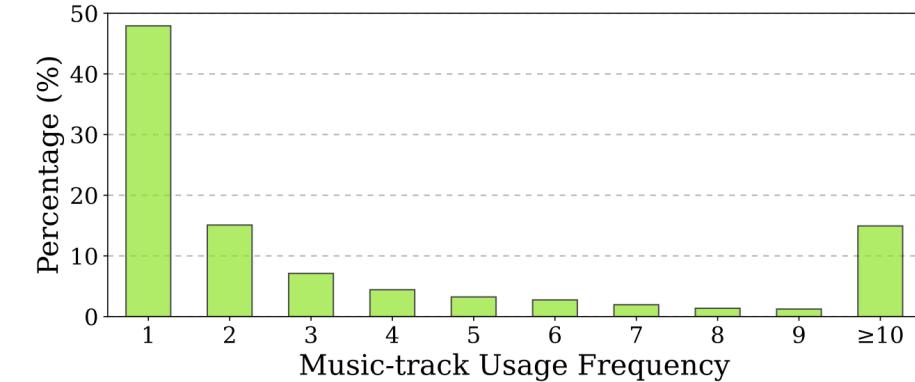
Snapshots of video samples



Video tag cloud

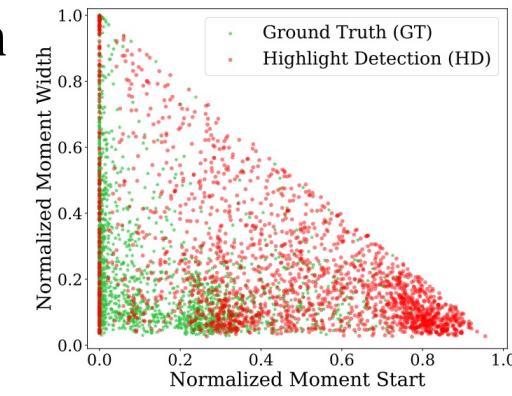
Dataset Analysis & Statistics

➤ Large & Diverse


Distribution of video duration / music-track duration

➤ Train/Val/Test split

Split	Music tracks	Duration(s)	Query videos	Duration(s)	Moments
Total	4,050	138.9±69.6	53,194	23.9±10.7	35,393
Train	3,496	138.3±69.4	49,194	24.0±10.7	31,660
Val.	2,000	139.6±70.0	2,000	22.8±10.8	2,000
Test	2,000	139.9±70.1	2,000	22.6±10.7	2,000


Overview of the MGSV-EC dataset

➤ Long-tail distribution

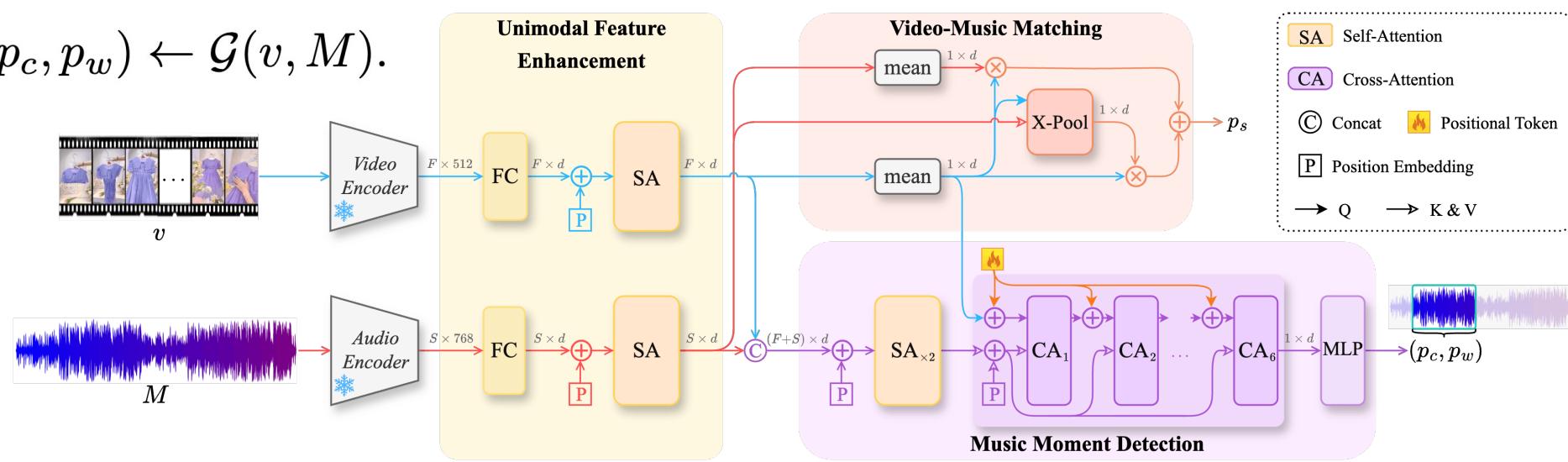
Usage frequency of music-track for video

➤ Directly using a chorus or intro is not enough

GT vs. HD moment position

Evaluation Protocol

- **Single-music Mode:** In order to evaluate the accuracy of single-music grounding (SmG), per query video we compute temporal Intersection over Union (IoU) between the predicted moment and the corresponding ground truth. Higher IoU is better.
- **Music-set Mode:** The effectiveness of a model is jointly determined by its performance in two sub-tasks, i.e. video-to-music retrieval (V2MR) for finding the relevant music track and music-set grounding (MsG) to localize the relevant moment.

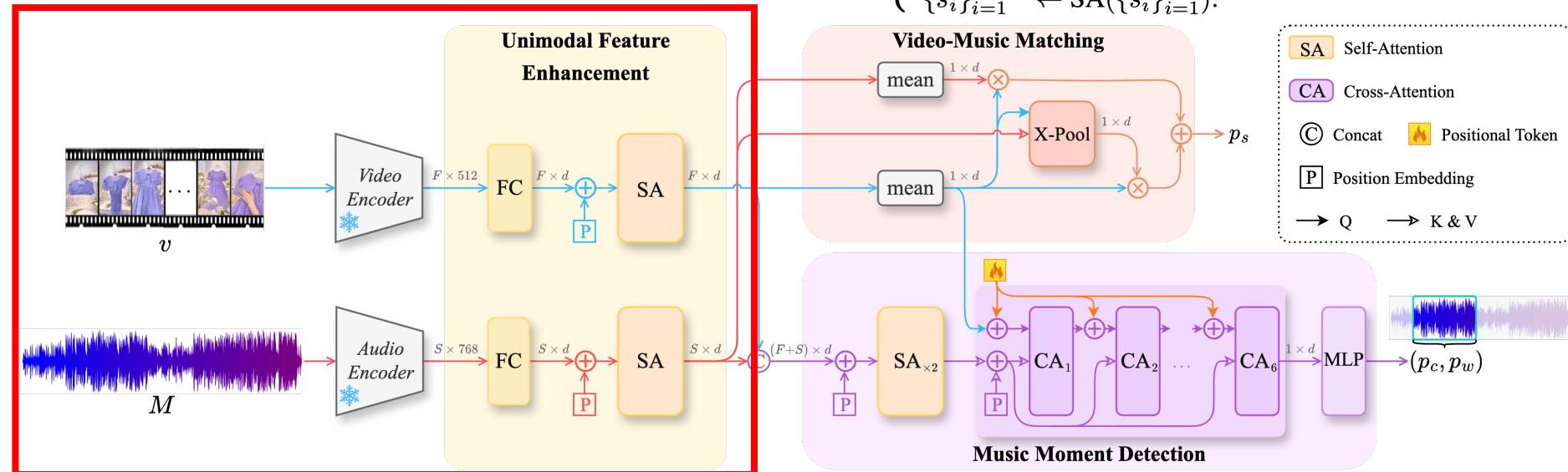

Mode	(Sub-)Tasks	Metrics
<i>Single-music</i>	Grounding (SmG)	mIoU
<i>Music-set</i>	Video-to-Music Retrieval (V2MR)	R _k
	Grounding (MsG)	MoR _k

Evaluation modes, (sub-)tasks and metrics

Method Overview – Matching + Detection

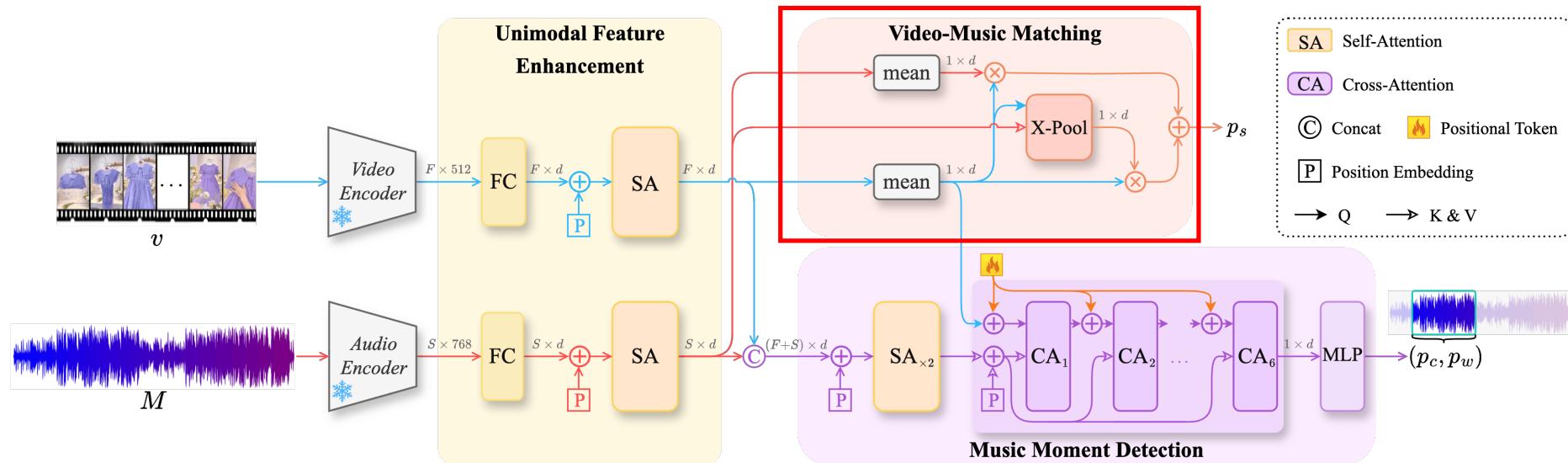
- **Two sub-tasks in one:** Solving MGSV involves (1) **finding the right music track** and (2) **finding the right segment within that track**. The authors' solution combines both into a single unified approach.
- **High-level idea:** The model takes the video and a candidate song as input and outputs a predicted start time and end time that tells which part of the song matches the video.
- **Our model MaDe:** Our proposed model (**MaDe**, for Matching & Detection) tackles video-to-music matching and moment detection together in an end-to-end deep neural network. Instead of doing retrieval first then trimming, it learns to do both jointly.

$$(p_s, p_c, p_w) \leftarrow \mathcal{G}(v, M).$$

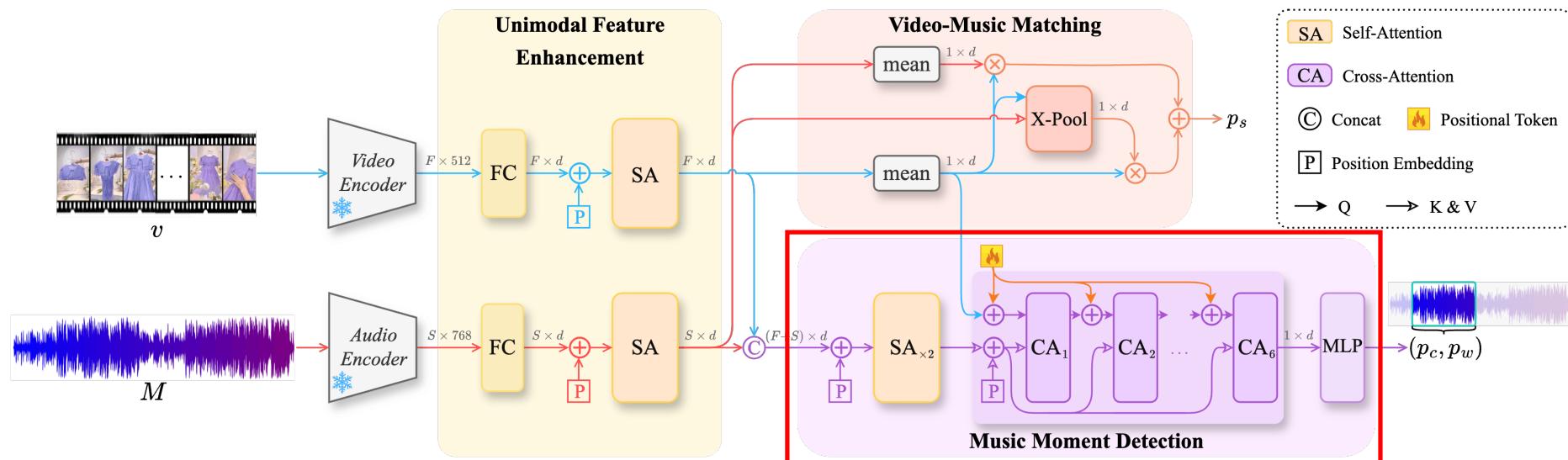


Model Architecture Diagram

- 1. Feature Extraction:** The video (as frames) and music (as spectrogram) are processed separately by pre-trained **encoders**, ViT for video and AST for audio. These generate high-level feature sequences over time.
- 2. Temporal Modeling:** Each modality passes through its own **temporal module** to capture how content patterns—like rhythm in music or scene changes in video.


$$\left\{ \begin{array}{l} \{f_i\}_{i=1}^F \leftarrow \text{ViT}(v, F), \\ \{\hat{f}_i\}_{i=1}^F \leftarrow \text{FC}_{512 \times d}(\{f_i\}_{i=1}^F), \\ \{\tilde{f}_i\}_{i=1}^F \leftarrow \text{SA}(\{\hat{f}_i\}_{i=1}^F), \\ \{s_i\}_{i=1}^S \leftarrow \text{AST}(M, S), \\ \{\hat{s}_i\}_{i=1}^S \leftarrow \text{FC}_{768 \times d}(\{s_i\}_{i=1}^S), \\ \{\tilde{s}_i\}_{i=1}^S \leftarrow \text{SA}(\{\hat{s}_i\}_{i=1}^S). \end{array} \right.$$

3. Cross-Modal Fusion & Matching: A **cross-attention** module lets the video attend to relevant parts of the music. A transformer then fuses the two modalities into a shared representation.


$$\left\{ \begin{array}{l} h(v) \leftarrow \text{mean-pooling}(\{\tilde{f}_i\}_{i=1}^F), \\ h_0(M) \leftarrow \text{mean-pooling}(\{\tilde{s}_i\}_{i=1}^S), \\ h_1(M) \leftarrow \text{X-Pool}(h(v) \text{ as } Q, \{\tilde{s}_i\}_{i=1}^S \text{ as } K/V), \\ p_s \leftarrow cs(h(v), h_0(M)) + cs(h(v), h_1(M)). \end{array} \right.$$

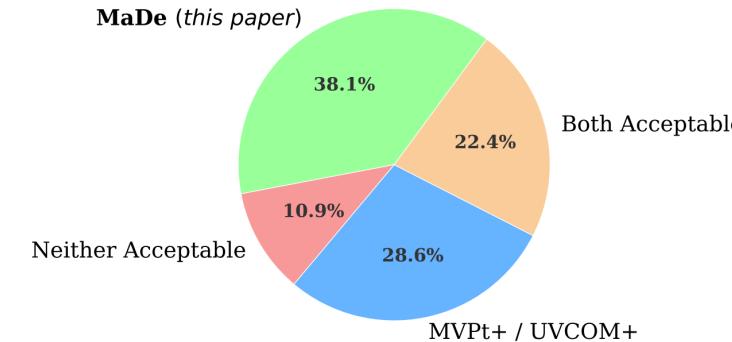
4. DETR-inspired Decoder & Output: A **DETR-style decoder** uses learnable queries to predict the start and end of the best-matching music segment. The model is trained end-to-end by comparing predictions to ground-truth segments.

$$\begin{cases} \{c_i\}_{i=1}^{F+S} & \leftarrow \text{SA}_{\times 2}(\{\tilde{f}_i\}_{i=1}^F \odot \{\tilde{s}_j\}_{j=1}^S), \\ \phi_0 & \leftarrow h(v), \\ \phi_k & \leftarrow \text{CA}_k(P + \phi_{k-1} \text{ as } Q, \{c_i\}_{i=1}^{F+S} \text{ as } K/V), \\ (p_c, p_w) & \leftarrow \text{MLP}(\phi_6). \end{cases}$$

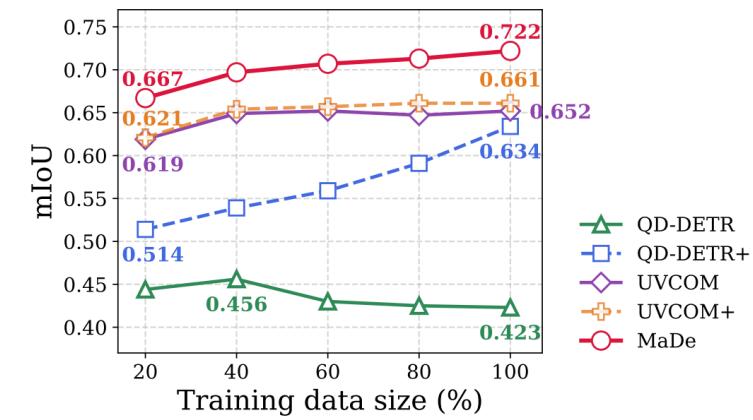
Performance Evaluation

Experimental setup: The model is evaluated on the MGSV-EC dataset. Metrics involve **retrieval success** at various ranks (e.g. the correct segment make it to the top-1, top-5, top-10, *etc.*) and **localization accuracy** (how well the predicted segment overlaps the ground truth).

Model	#Params (M)	SmG <i>mIoU</i>	V2MR			MsG		
			<i>R1</i>	<i>R5</i>	<i>R10</i>	<i>MoR1</i>	<i>MoR10</i>	<i>MoR100</i>
<i>Video Grounding re-purposed:</i>								
TR-DETR, AAAI'24 [26]	7.8	0.393	—	—	—	—	—	—
QD-DETR, CVPR'23 [23]	6.9	0.423	—	—	—	—	—	—
EaTR, ICCV'23 [14]	8.5	0.588	—	—	—	—	—	—
Moment-DETR, NIPS'21 [16]	4.3	0.630	—	—	—	—	—	—
TR-DETR+	6.2	0.630	—	—	—	—	—	—
QD-DETR+	5.4	0.634	—	—	—	—	—	—
UVCOM, CVPR'24 [30]	14.5	0.652	—	—	—	—	—	—
UVCOM+	12.9	0.661	—	—	—	—	—	—
<i>Video-to-Music Retrieval:</i>								
MVPt, CVPR'22 [27]	3.6	—	2.4	6.8	9.4	—	—	—
MVPt+	3.6	—	6.7	11.9	14.9	—	—	—
<i>Composite solution:</i>								
MVPt+ / UVCOM+	16.5	0.661	6.7	11.9	14.9	5.4	11.8	23.0
<i>Video Corpus Moment Retrieval re-purposed:</i>								
CONQUER, MM'21 [12]	39.4	0.572	5.8	11.0	13.5	4.4	9.6	18.4
MaDe (<i>this paper</i>)	10.5	0.722	8.8	16.3	19.8	8.3	17.6	30.7


Overall results. #Params excludes the (weights-frozen) video / audio encoders.

Ablation Study



#	Setup	SmG		MsG		
		<i>mIoU</i>	<i>MoR1</i>	<i>MoR10</i>	<i>MoR100</i>	
0	Full-setup	0.722	8.3	17.6	30.7	
<i>Uni-modal Feature Enhancement:</i>						
1	<i>w/o SA</i>	0.699	6.4	14.3	27.4	
2	<i>SA</i> \rightarrow <i>MLP</i>	0.707	6.8	14.1	26.9	
<i>Video-Music Matching:</i>						
3	<i>cs</i> ($h(v)$, $h_0(M)$) as p_s	0.708	7.1	15.8	29.1	
4	<i>cs</i> ($h(v)$, $h_1(M)$) as p_s	0.707	6.3	15.1	29.0	
5	single loss	0.715	7.5	16.8	29.2	
6	$h_0(M) + h_1(M)$	0.716	6.9	16.0	28.3	
<i>Music Moment Detection:</i>						
7	<i>w/o SA</i> $_{\times 2}$	0.705	8.1	16.7	29.1	
8	<i>SA</i> $_{\times 2}$ \rightarrow <i>CA</i>	0.697	7.1	16.4	29.1	
9	0 as ϕ_0	0.709	7.4	16.4	29.0	
10	$h_0(M)$ as ϕ_0	0.719	8.0	17.4	30.4	
11	$h_1(M)$ as ϕ_0	0.718	7.5	16.9	29.5	
12	#Query-tokens: 1 \rightarrow 10	0.716	7.6	16.7	30.6	
13	$(p_c, p_w) \rightarrow p_c$	0.706	7.3	16.5	29.0	

Ablation study of MaDe

Human evaluation results

SmG performance with varying training data sizes

Generated BGM Comparisons

Original background music

BGM generated by **MaDe** (ours)

Composite solution

More BGM Comparisons can be seen in our project page: <https://rucmm.github.io/MGSV>

Contributions

- **New Task:** Introduced MGSV and showed the limits of traditional video-to-music retrieval.
- **Large-Scale Dataset:** Created MGSV-EC with 53k video–music pairs, using a semi-automatic annotation method.
- **Our Model:** Proposed MaDe, an end-to-end model that combines retrieval and localization, outperforming simple baselines.

Findings & Future Directions :

Despite difficulty of the task, our model learns meaningful video–audio matches. While accuracy is still modest, the model proves the task is feasible and provides a solid foundation for future improvements.

Music Grounding by Short Video

Thank you for your attention!

arXiv:2408.16990

xxayt/MGSV

rucmm.github.io/MGSV

7 x 29
北京 海淀

