OURO: A Self-Bootstrapped Framework
for Enhancing Multimodal Scene
Understanding



Motivation: Why Fine-Grained
Understanding?

Global captions miss object-level attributes and spatial relations.
High-quality fine-grained labels are costly; scaling is difficult.
We need hierarchical, multi-granularity scene representations.



Key Contributions

Self-bootstrapped pipeline (base VLM + RPN) for hierarchical annotations;
no extra human labels.

Large-scale multi-granularity corpus (captions + QA) built automatically.

Improved performance across 20+ benchmarks and multiple task families.



OURO at a Glance
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Two-stage framework: generate hierarchical data, then train jointly on
global+local inputs.

Promotes interpretability via hierarchy and robustness via joint objectives.



Stage | — Multi-Level Scene Annotation

(Intuition)

RPN proposes sub-regions; VLM describes each region.
Merge local descriptions back to parents for hierarchical captions.
Generate QA pairs from the hierarchical descriptions.
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Figure 2. The process of multi-level scene understanding and VQA dataset generation in the OURO framework.

Algorithm 1 Recursive Scene Annotation with VLM

Require: Image [/, Prompt P, Confidence threshold
Ensure: Hierarchical descriptions d'”) and QA pairs Q A
1: funetion RECURSIVEANNOTATE(/)
2 d9 + RecursiveDescribe( I, 0)
% QA+ VLM(L, P, d") & Generate QA pairs
using descriptions

4 return d'%), QA

5 end function

6 function RECURSIVEDESCRIBE(r(!), 1)

7 d®) — VLM(r() > Generate description
8 R(+1)  RPN(r(®) &> Generate sub-regions
9 if R(*+1) £ () then

10: Dit+l) g

11: for each r{' t" € R(+1) do

12: d"*Y) + RecursiveDescribe(r*") ¢ + 1)
13: D+ ¢ p+1) y (gt}

14: end for

15: d®)  Merge(d*), D{t+1))

16 end if

17: return d'%
18: end function




Stage Il — Joint Bootstrapping Training

Input: full image + k sampled sub-regions per instance.
Objectives: caption loss + QA loss; shared encoder—decoder.
Balances global context with local details.
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Figure 3. The overall architecture of the OURO model training process. The original image and its sub-regions are input into the Visual
Encoder, which extracts both region and global image features. These features are then passed to the LLM Decoder to generate answers to
the given questions, while simultaneously training descriptions.



Data & Training Setup

Tasks: Captioning, General VQA, Scene-Text VQA, Document VQA.
LoRA rank, epochs, LR schedule, precision, hardware (fill from paper).
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Figure 4. Training dataset distribution across different tasks

The Image Caption task utilizes datasets such as

COCO Caption [71], TextCaps [58], and Detailed Caption

with 404k samples. For General VQA, we make use of

VQAV2 [20], OKVQA [44], GQA [26], ScienceQA [42],

and VizWiz [24], collectively adding up to 306k sam_x0002_ples. The
Scene Text-centric VQA task is supported by

datasets like TextVQA [59], OCRVQA [28], and AI2D [7],

which provide a total of 308k samples. For Doc-oriented

VQA, datasets such as DocVQA [47], ChartQA [45], In_x0002_foVQA
[48], and others, with 423k samples, are employed.



Results — General VQA

OURO outperforms base and peer models on multiple general VQA datasets.
Highlight key numbers (e.g., OKVQA, VQAV2, VizWiz, GQA).

Model OKVQA VQAV2 VizWiz GQA VSR ScienceQA IconVIQA
BLIP-2-TB [34] 459 - 19.6 41.0 509 61.0 406
InstructBLIP-7B [12] - - 33.4 495 52.1 - 44 8
LLaMA-AdapterV2-TB [19] 49.6 70.7 39.8 45.1 - - -
Shikra-13B [Y] 47.2 77.4 - - - - -
mPLUG-OwI2-TB [T0] 577 79.4 54.5 56.1 - 68.7 -
Fuyu-8B [6] 6.6 74.2 - - - - -
MiniGPT-v2-TB [&] 57.8 - 53.6 60.1 62.9 - 515
FlexCap-LLM [17] 521 65.6 41.8 495 - - -
Qwen-VL-TB [5] 58.6 79.5 35.2 593 63.8 67.1 -
Qwen-VL-TB-Chat [5] 56.6 78.2 38.9 57.5 61.5 68.2 -
LLaVAl.5-7B [39] - 78.5 50.0 62.0 - 668 -
LLaVAl.5-13B [39] - 80.0 53.6 633 - T1.6 -
VisCoT-TB [57] - - - 63.1 6l.4 - -
Monkey-TB [36] 61.3 80.3 al.2 60.7 - 694 -
SPHINX-TB [37] 62.1 78.1 399 62.6 58.5 69.3 527
Qwen2-VL-TB [64] 579 75.5 64.7 713 - 954 -
OURO-7B 66.2 80.8 T0.4 777 77.0 87.0 516

Table 1. Results on General VQA and other related tasks.



Results — Document-Oriented VQA and
Scene Text-Centric VQA

Strong results on DocVQA/ChartQA/InfoVQA/WTQ;

Model TextVvQA  AI2D  STVQA  ESTVQA
Pix2Stmet-Large [32] . 421 - -
BLIP-2 [34] 424 E 3 :
InstructBLIP [12] 50.7 5 = .
mPLUG-DocOwl-TB [69] 526 - - -
mPLUG-OwI2-TB [70] 543 E > 2
Qwen-VL-TB [5] 63.8 623 59.1 778
Qwen-VL-Chat-7TB [5] 61.5 57.7 i i
LLaVA-1.5 [39] 58.2 E H -
Monkey-7B [36] 67.6 62.6 677 82.6
Qwen2-VL-TB [64] 82.2 77.6 613 §3.7
OURO-TB 85.3 80.2 77.0 90.2

Muodel DocVOQA ChartQA InfoVQA DeepForm KLC WTOQ)
Closed -source Models
GFT-4o [49] 928 85.7 66.4 iR4 299 466
GeminiPro-1.5 [13] 912 347 739 323 241 503
Claude-3.5 [4] BE.S 518 9.1 314 248 471
Open-source Models
InternVL-2.5-2B [11] 817 75.0 61.9 13.1 6.6 363
DeepSeek-VL2-Tiny [67] 886 BL.O 639 251 19.0 35.1
Phi3 5-Vision [ 1] 860 E2.2 562 10.5 75 172
LLaVA-NeXT-TB [23 635 521 309 1.3 34 M1
Llama3 2-11B [21] 827 238 36.6 1.8 35 130
ALIGNVLM-8B [46] 81.2 75.0 538 63.3 355 453
Qrwen-VL-TB [5] 65.1 65.7 354 4.1 159 216
Monkey [36] 66.5 5.1 36.1 4006 328 253
Quen2-VL-TB [64] 914 T35 76.8 426 306 579
OURD-TB 935 g4.1 79.1 52.5 562 TpLO

Table 2. Results on Doc-oriented VQA.

Table 3. Results on Scene Text-centric VQA.



Visualization
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Figure 5. Qualitative comparison of scene descriptions and VQA responses across different datasets. illustrating outputs from our model,
ChatGPT-40, Qwen2-VL and DeepSeek-VL .



Limitations & Future Work

Conciseness & alignment for long hierarchical captions.
From random sub-region sampling to policy-guided, interpretable selection.
Further optimize training/inference efficiency.



