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* Learning with noisy labels is a crucial task for training accurate deep neural
networks. Robust loss function is a popular approach to solve this problem.

Motivation

 Active Passive Loss (APL) jointly optimizes an active and a passive symmetric
loss to mutually enhance the overall fitting ability.

 Asymmetric losses, a new class of robust loss functions, possess superior
properties compared to symmetric losses.

* However, existing asymmetric losses are not compatible with advanced
optimization frameworks such as APL.



* We propose a novel asymmetric loss function, Asymmetric Mean Square
Error (AMSE). We rigorously establish the condition for AMSE to satisfy noise-

tolerance.

Contributions

* By incorporating the proposed AMSE into the APL framework, we introduce a
novel approach called Joint Asymmetric Loss (JAL), which ensures robustness

and enhances sufficient learning.

* The extensive results highlight the superiority of our method.



Preliminary

For a loss L(f(x),y) = 3., _, €(f (X)x, ex):

* (Active Loss Function) L, iye IS an active loss function if V(x,y) €
D,Vk a y"g(f(x)k’ek) =0

* (Passive Loss Function) L,,.ive is @ passive loss function if V(x,y) €
D,3k #y,£(f (X)k. er) # 0

By combining the two different symmetric loss functions, APL can improve
the fitting ability under the premise of ensuring robustness.



* Recently, asymmetric loss functions have been proposed, which are noise-
tolerant.

Preliminary

 (Asymmetric Condition). On the given weights wq,...,wr =0,
where 3t € [K],s.t.,w; > matx w;, a loss function L is called asymmetric
[
if L satisfies

K
arg min 2 wi L(f(x), k) = argmin L(f(x),t),
f(x) ot f(x)

where we always have arg r]rcl(ir% L(f(x),t) = ey.
X



* In this paper, we extend the asymmetric loss function to a more complex
passive loss scenario and propose the Asymmetric Mean Square Error (AMSE).

Methodology

 Asymmetric Mean Square Error (AMSE)

LamsE =z la-e,—f(x) I3

* Theorem (Noise-tolerant for AMSE). On the given weights wy, .. WK, where

Wy > Wy, and w, = = max w;. The loss function L(f(x),y) == || a-ey,—

f(x) Ilq - p” |a e — f(x)|?, where g > 0and a = 1 are parameters,

Wi

q-1
at" + iam Wi

m
>
is asymmetric if and only if — we = (a—1)i—1

-I(g>1)+10(qg <1).



We integrate the proposed AMSE into the APL framework to enhance its
performance, resulting in a novel approach called Joint Asymmetric Loss (JAL).

Methodology

* By combining Normalized Cross Entropy (NCE), we have JAL-CE:
Liar-ce = @ - Lncg + B+ LamsE
* By combining Normalized Focal Loss (NFL), we have JAL-FL:

LiaL-rL = @ - Lypr, + B - Lamsk



Experiments

Table 3. Last epoch test accuracies (%) of different methods on CIFAR-10 and CIFAR-100 with clean, symmetric (7 € [0.2, 0.4, 0.6, 0.8]),
and asymmetric (n € [0.1,0.2,0.3, 0.4]) label noise. The results (mean+std) are reported over 3 random trials and the top-2 best results

are in bold.
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Experiments

Table 5. Last epoch test accuracies (%) of different methods on

Table 4. Last epoch test accuracies (%) of different methods on CIFAR-10 and CIFAR-100 with instance-dependent noise (IDN) (n € CIFAR-10N and CIFAR-100N human-annotated noise [26]. The

[0.2,0.4,0.6]). The results "mean-std" are reported over 3 random trials and the top-2 best results are in bold. results "mean-std" are reported over 3 random trials and the top-2
best results are in bold.

Loss CIFAR-10 IDN CIFAR-100 IDN
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Figure 3. Histograms of the distribution of samples with different prediction probabilities in the training set for CIFAR-10 with 0.4
symmetric noise.

Table 6. Last epoch test accuracies (%) of different methods on ILSVRC12, WebVision, and Clothing]lM. The top-2 best results are in

bold.
Loss | CE GCE SCE NCE+RCE NCE+AGCE ANL-CE ANL-FL JAL-CE JAL-FL
WebVision | 66.28 61.84 65.16 66.96 67.16 67.36 67.76 69.84 69.20
ILSVRC12 | 60.68 60.32 61.00 63.96 64.36 65.60 64.84 66.64 66.00

ClothinglM | 67.93 68.46 67.71 69.24 67.90 69.75 69.90 70.31 70.11




Thanks for your attention!

Any question? Please contact us!

Jialiang Wang: cswjl@stu.hit.edu.cn
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