LookOut: Real-World Humanoid Egocentric Navigation
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Given a posed egocentric video, we obtain frame-wise DINO features with the pre-trained
encoder, and unproject them to 3D for temporal aggregation. The aggregated features are
then projected to BEV for further processing and eventually used to predict future head

poses. The bulk of the computation happens in BEV through BEV Net (ConvNets + MLPs).

frames shown in detail on the right), our model predicts a . . .
sequence of 6D head poses in the future (green-outlined Aria NaVIgatlon Dataset (AND) R

Given a posed egocentric video (black-outlined frustums, with

frustums). We design a data collection pipeline with the Project We need data that 1) contains posed egocentric RGB videos of real-world navigation with
Aria glasses and train our model on a dataset collected this way. human, 2) captures both static and dynamic obstacles, and 3) displays the active

This problem features real-world navigation challenges including information-gathering behaviors that we want our model to learn. Additionally, we would
collision avoidance with static and dynamic obstacles, and like our capture setup easily scalable.

human-like information-gathering behaviors (e.g. looking to the We designed a data collection pipeline that uses only a pair of the Project Aria glasses as
sides when crossing roads in this example). The point cloud is the hardware, and requires a few seconds to setup before each recording session. Our
shown for visualization but is not an input to the model. resulting dataset contains 4 hours of recording from 18 densely populated places.
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Red: model predictions; . gourd-truth.
_ Col_stt_avg 1| Col_dyn_avg 1 _ Col_dyn_avg 1 Box: viewing frustums; Curve: ground-projected translation.
Linear Extrapolation 0.45 1.21 79.1 82.4 Point Cloud Only 0.40 0.88 83.2 84.6 o Our model forecasts collision-free paths around both static and
EgoCast [8] 0.34 0.63 85.3 86.2 Depth Only 0.22 0.23 87.0 91.6 dynamic obstacles.

Ours 0.17 0.16 85.6 90.2 RGB + Depth 0.15 0.13 87.4 914 o Our model learns the information-gathering behavior that

L L1 lation / - : humans demonstrate in the training data.
1+ L1 error on translation rot.atl.orL DING temp pooling 0.26 0.44 84.9 86.2 e Other interesting behaviors emerge, such as waiting when no

Col_*_avg: percentage of predictions that are at least x (cm) away from the

aths available, and path adaptation based on new visual cues.
closest obstacle, averaged between x € {15, 25, 35}. stt: static; dyn: dynamic. 2D oy 0-L7 0-LE 20 — P P P



