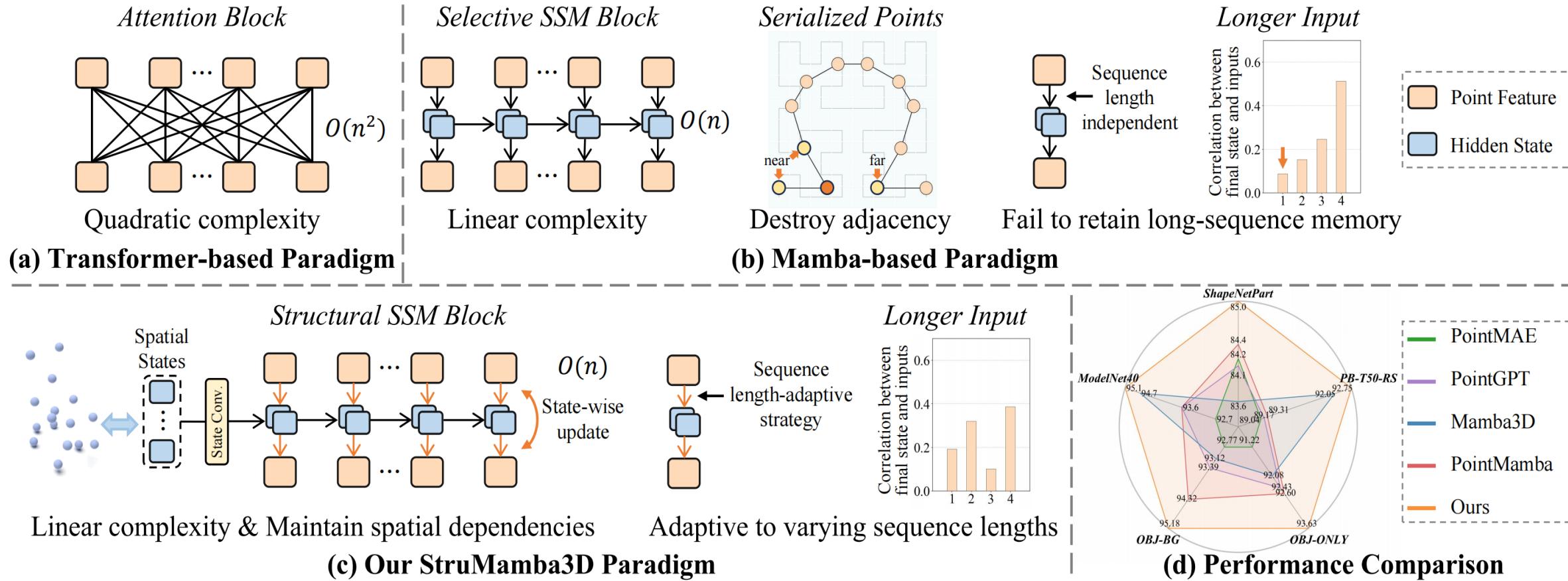
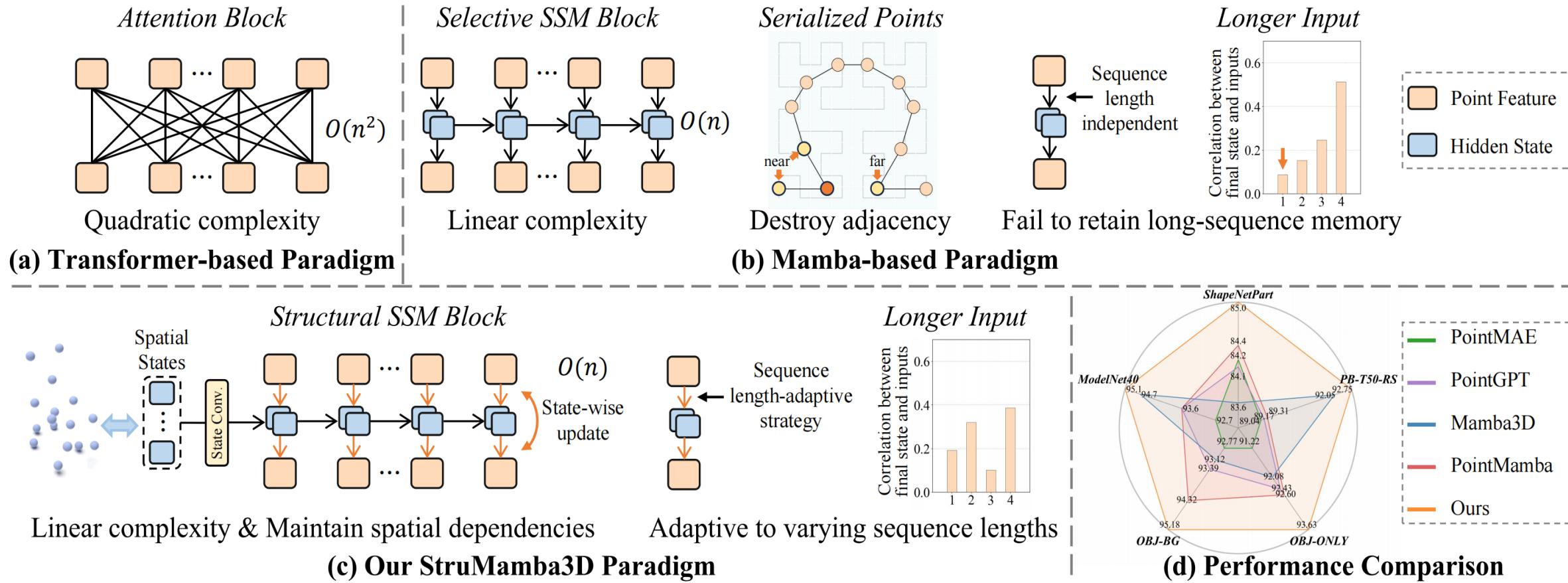
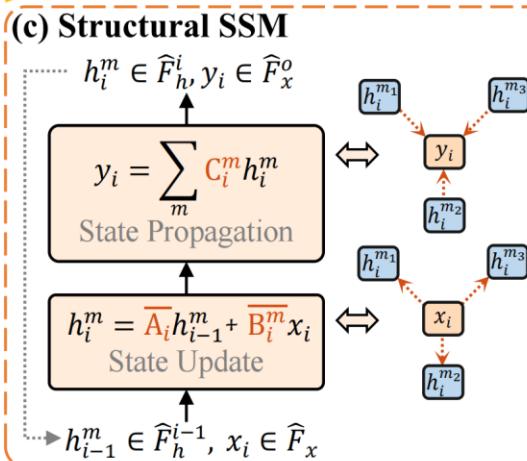
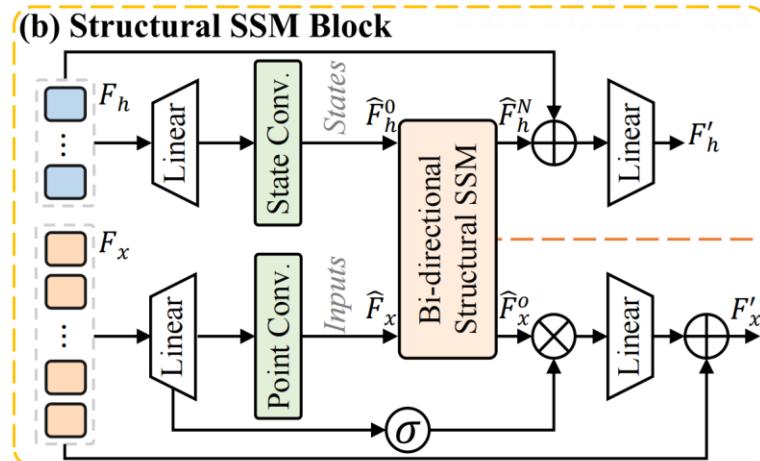
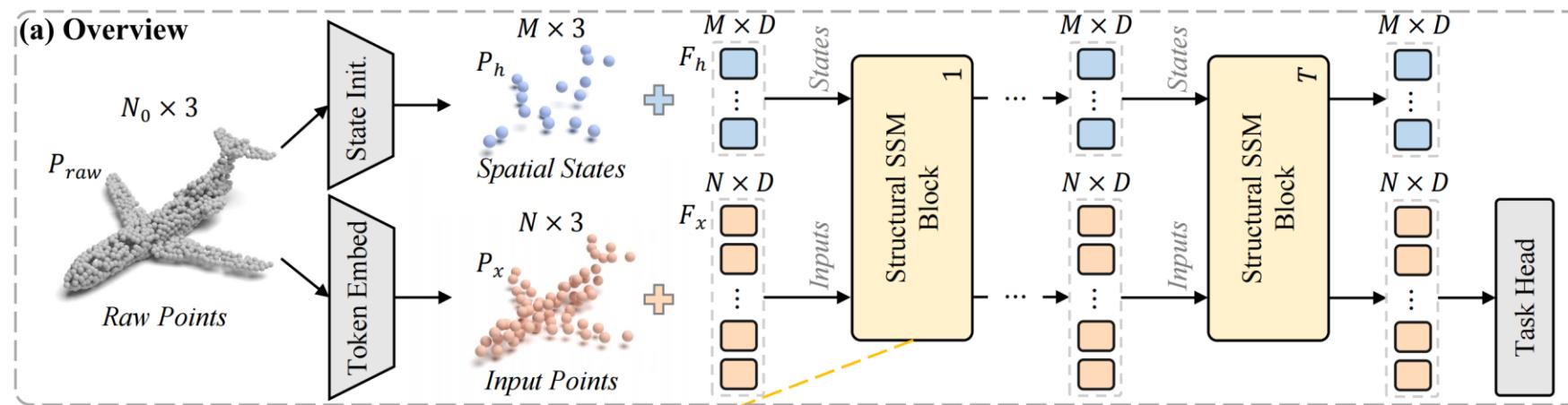

StruMamba3D: Exploring Structural Mamba for Self-supervised Point Cloud Representation Learning

Chuxin Wang^{1,2}, Yixin Zha², Wenfei Yang^{1,2}, Tianzhu Zhang^{1,2}


¹University of Science and Technology of China

²National Key Laboratory of Deep Space Exploration, Deep Space Exploration Laboratory


❖ **Mamba-based paradigm significantly reduces computational cost compared to the Transformer-based paradigm. This results in better scalability and efficiency for large-scale data processing.**

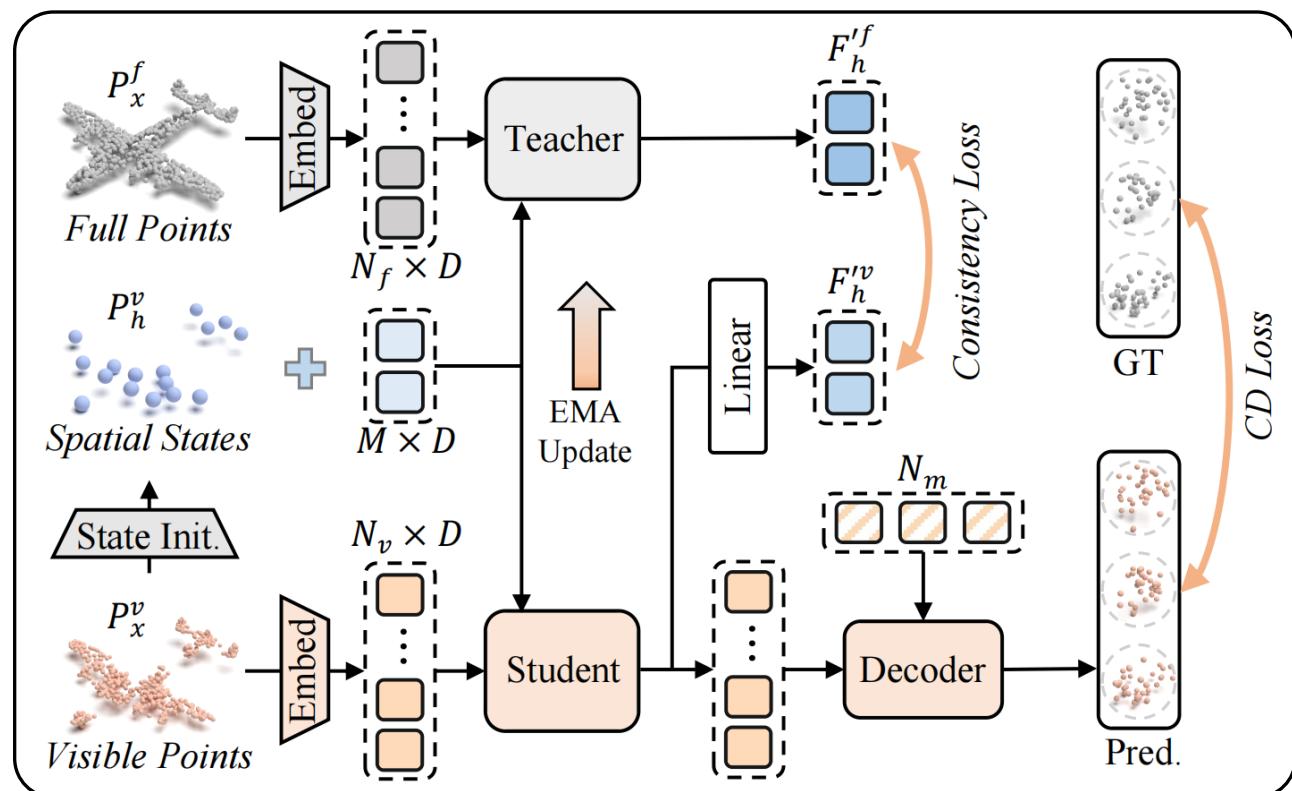



❖ Mamba-based methods face challenges, such as **serialized points destroying the adjacency of 3D points**, and its pre-trained selection mechanism **struggles to retain long-sequence memory**.

❖ Our StruMamba3D paradigm uses the structural SSM to **maintain the spatial dependencies** among points and the sequence length-adaptive strategy to **retain long-sequence memory**.

- ❖ Hidden states are assigned **real spatial positions**, and their update is conditioned on parameters generated from **spatial relationships**, enabling **preservation of spatial structures and effective feature modeling**.

$\mathbf{B}_o: (\mathbf{B}, \mathbf{N}, \mathbf{M}) \leftarrow \phi_{\mathbf{B}}(\hat{F}_x) + \text{MLP}_{\mathbf{B}}(\Delta P)$
 $\mathbf{C}_o: (\mathbf{B}, \mathbf{N}, \mathbf{M}) \leftarrow \phi_{\mathbf{C}}(\hat{F}_x) + \text{MLP}_{\mathbf{C}}(\Delta P)$
/* softplus ensures positive Δ_o */
 $\Delta'_o: (\mathbf{B}, \mathbf{N}, \mathbf{E}) \leftarrow \log(1 + \exp(\phi_{\Delta}(\hat{F}_x)))$
/* learnable parameter τ regulates the total sampling time Δ_{all} */
 $\Delta_o: (\mathbf{B}, \mathbf{N}, \mathbf{E}) \leftarrow \tau \times \Delta'_o / (\sum_{i=1}^N \Delta_o^i)$
/* Parameter A_o is learnable parameter: (\mathbf{M}, \mathbf{E}) */
 $\mathbf{A}_o: (\mathbf{B}, \mathbf{N}, \mathbf{M}, \mathbf{E}) \leftarrow \Delta_o \otimes \text{Parameter}_o^A$
 $\mathbf{B}_o: (\mathbf{B}, \mathbf{N}, \mathbf{M}, \mathbf{E}) \leftarrow \Delta_o \otimes \mathbf{B}_o$
 $\hat{F}_x^o: (\mathbf{B}, \mathbf{N}, \mathbf{E}), \hat{F}_h^o: (\mathbf{B}, \mathbf{M}, \mathbf{E}) \leftarrow \text{SSM}(\bar{\mathbf{A}}_o, \bar{\mathbf{B}}_o, \mathbf{C}_o)(\hat{F}_x, \hat{F}_h)$

- ❖ Our method incorporates a **dynamic state update strategy** and a **spatial state consistency loss**, which strengthen the model long-sequence memory capability and improve its robustness to variable input lengths.

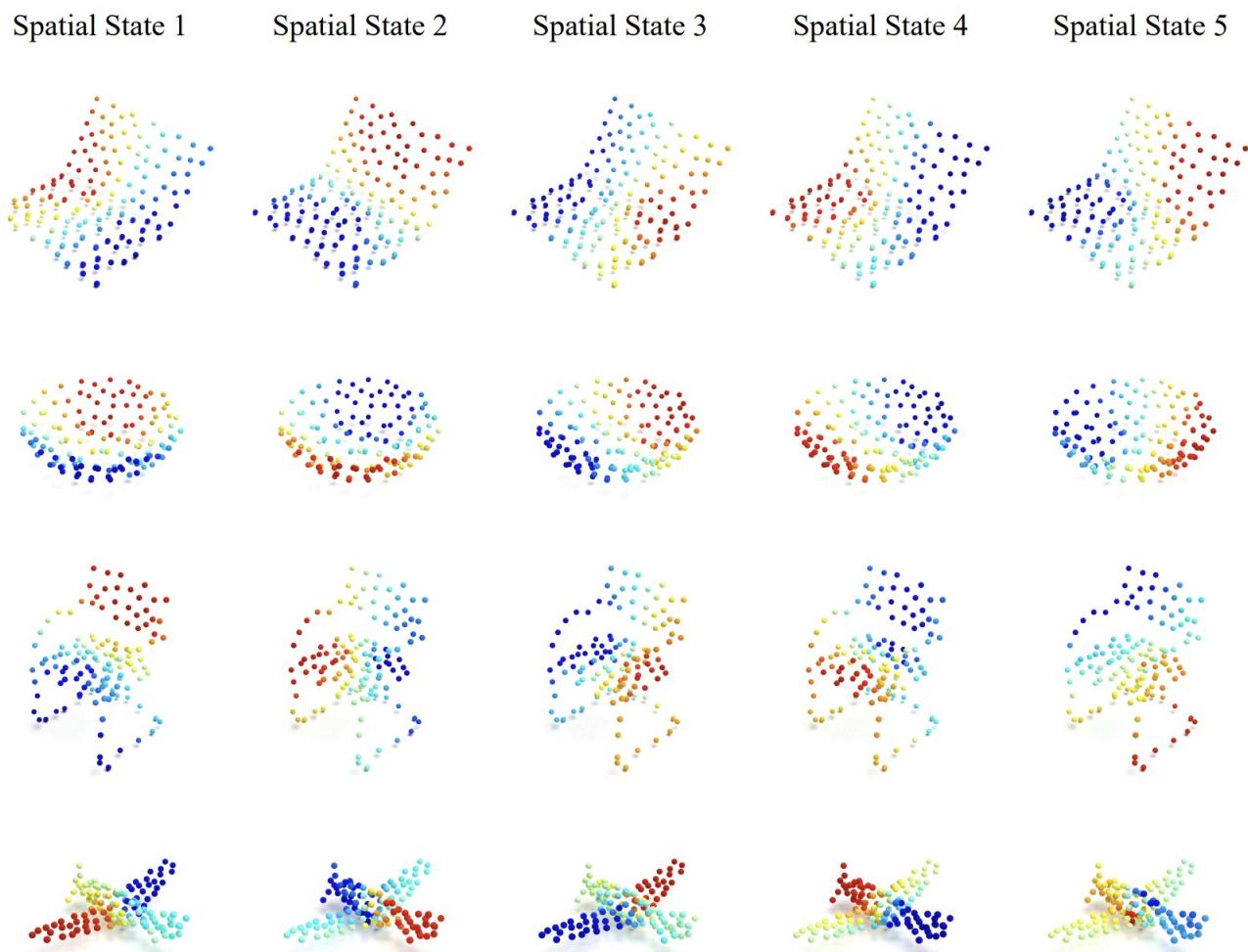

Discrete SSM:

$$h_t = \bar{\mathbf{A}}h_{t-1} + \bar{\mathbf{B}}x_t, \quad y_t = \mathbf{C}h_t,$$

$$\bar{\mathbf{A}} = \exp(\Delta \mathbf{A}), \quad \bar{\mathbf{B}} = (\Delta \mathbf{A})^{-1}(\exp(\Delta \mathbf{A}) - \mathbf{I})\Delta \mathbf{B},$$

Adaptive State Update:

$$\Delta_i = \frac{\tau \times \Delta_i}{\sum_{i=1}^N \Delta_i}.$$

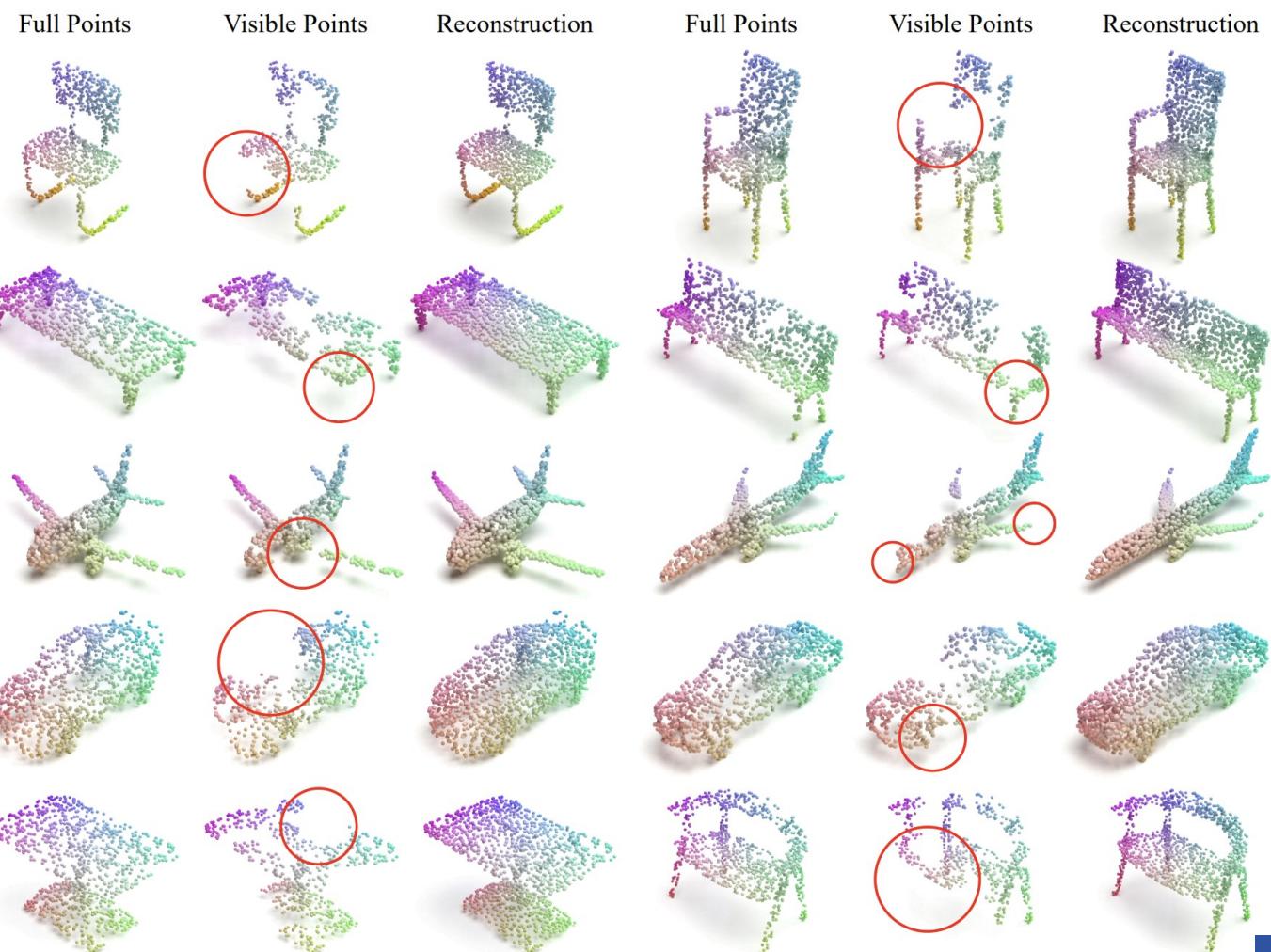


Spatial state modeling significantly enhances the representation of point cloud structural features **without requiring sequence serialization.**

Method	Overall Accuracy		mIoU _c
	ScanNN	MN40	SNPart
baseline	88.24	92.50	82.08
w/ Structural SSM	91.78	93.92	84.15
w/ Lightweight Conv. for h	92.22	94.65	84.62
w/ Lightweight Conv. for x	92.40	94.81	84.77
w/ Bidirectional Scanning	92.75	95.06	84.96

$\phi(x)$	SS	MLP(ΔP)	Overall Accuracy		mIoU _c
			ScanNN	MN40	SNPart
✓	✗	✗	90.94	93.84	83.62
✓	✓	✗	91.33	94.12	83.87
✓	✓	✓	92.75	95.06	84.96
✗	✓	✓	91.12	94.25	84.02

Backbone	Serialization	Overall Accuracy		mIoU _c
		ScanNN	MN40	SNPart
Mamba	✗	88.24	92.50	82.08
Mamba	Z-order	89.28	93.44	83.89
Mamba	Hilbert	89.87	93.68	84.07
StruMamba3D	✗	<u>92.75</u>	95.06	<u>84.96</u>
StruMamba3D	Z-order	92.47	<u>94.98</u>	84.86
StruMamba3D	Hilbert	92.81	94.89	85.12

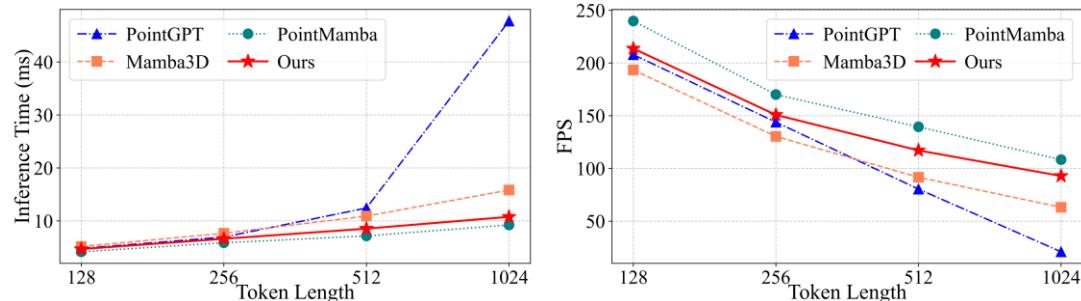


The sequence length adaptation strategy **enhances the long-sequence memory capability of the pretrained model in downstream tasks.**

Structural SSM Block	SLAS	Overall Accuracy		mIoU _c
		ScanNN	MN40	
✗	✗	87.23	91.86	81.56
✓	✗	92.09	94.45	84.49
✓	✓	92.75	95.06	84.96

ASUM	\mathcal{L}_{ssc}	Overall Accuracy		
		ScanNN	MN40	SNPart
✗	✗	92.09	94.45	84.49
✓	✗	92.26	94.57	84.56
✓	$\lambda = 1$	92.47	94.94	84.81
✓	$\lambda = 2$	92.75	95.06	84.96
✓	$\lambda = 5$	92.57	94.89	84.77
✗	$\lambda = 2$	92.16	94.65	84.56

Method	ScanObjectNN	ModelNet40	ShapeNetPart
	mOA	mOA	mIoU _c
w/o Pretraining	91.33	93.68	83.96
MPM Pretraining	92.09	94.45	84.49
Our Pretraining	92.75	95.06	84.96



多项下游任务中刷新 SOTA，具备线性复杂度与良好的可扩展性

分类任务

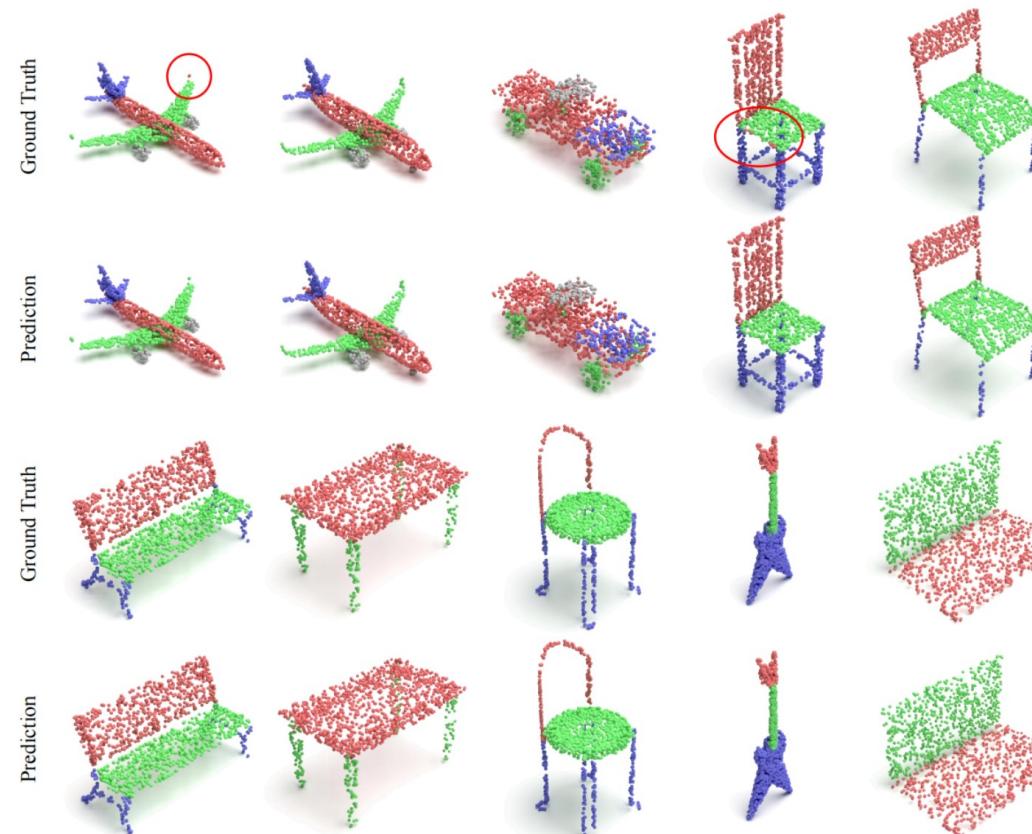
Method	Backbone	Param. (M)	FLOPs (G)	ScanObjectNN			MODELNET40	
				ScanObjectNN			MODELNET40	
				OBJ-BG	OBJ-ONLY	PB-T50-RS	w/o Voting	w/ Voting
<i>Supervised learning only</i>								
PointNet [25]	-	3.5	0.5	73.3	79.2	68.0	89.2	-
PointNet++ [26]	-	1.5	1.7	82.3	84.3	77.9	90.7	-
PointCNN [18]	-	0.6	-	86.1	85.5	78.5	92.2	-
DGCNN [31]	-	1.8	2.4	82.8	86.2	78.1	92.9	-
PRANet [8]	-	2.3	-	-	-	81.0	93.7	-
PointNeXt [28]	-	1.4	3.6	-	-	87.7	94.0	-
PointMLP [22]	-	12.6	31.4	-	-	85.4	94.5	-
DeLA [2]	-	5.3	1.5	-	-	88.6	94.0	-
PCM [42]	-	34.2	45.0	-	-	88.1	93.4	-
<i>Pre-training using single-modal information</i>								
PointBERT [38]	Transformer	22.1	4.8	87.43	88.12	83.07	92.7	93.2
MaskPoint [21]	Transformer	22.1	4.8	89.30	88.10	84.30	-	93.8
PointM2AE [39]	Transformer	12.7	7.9	91.22	88.81	86.43	92.9	93.4
PointMAE [†] [23]	Transformer	22.1	4.8	92.77	91.22	89.04	92.7	93.8
PointGPT-S [†] [3]	Transformer	29.2	5.7	93.39	92.43	89.17	93.3	94.0
PointMamba [†] [20]	Mamba	12.3	3.1	94.32	92.60	89.31	93.6	94.1
Mamba3D [†] [15]	Mamba	16.9	3.9	93.12	92.08	92.05	94.7	95.1
Ours[†]	Structural SSM	15.8	4.0	95.18	93.63	92.75	95.1	95.4
<i>Pre-training using cross-modal information</i>								
ACT [†] [7]	Transformer	22.1	4.8	93.29	91.91	88.21	93.7	94.0
Joint-MAE [14]	Transformer	22.1	-	90.94	88.86	86.07	-	94.0
I2P-MAE [†] [41]	Transformer	15.3	-	94.15	91.57	90.11	93.7	94.1
ReCon [†] [27]	Transformer	43.6	5.3	95.18	93.29	90.63	94.5	94.7

计算开销对比

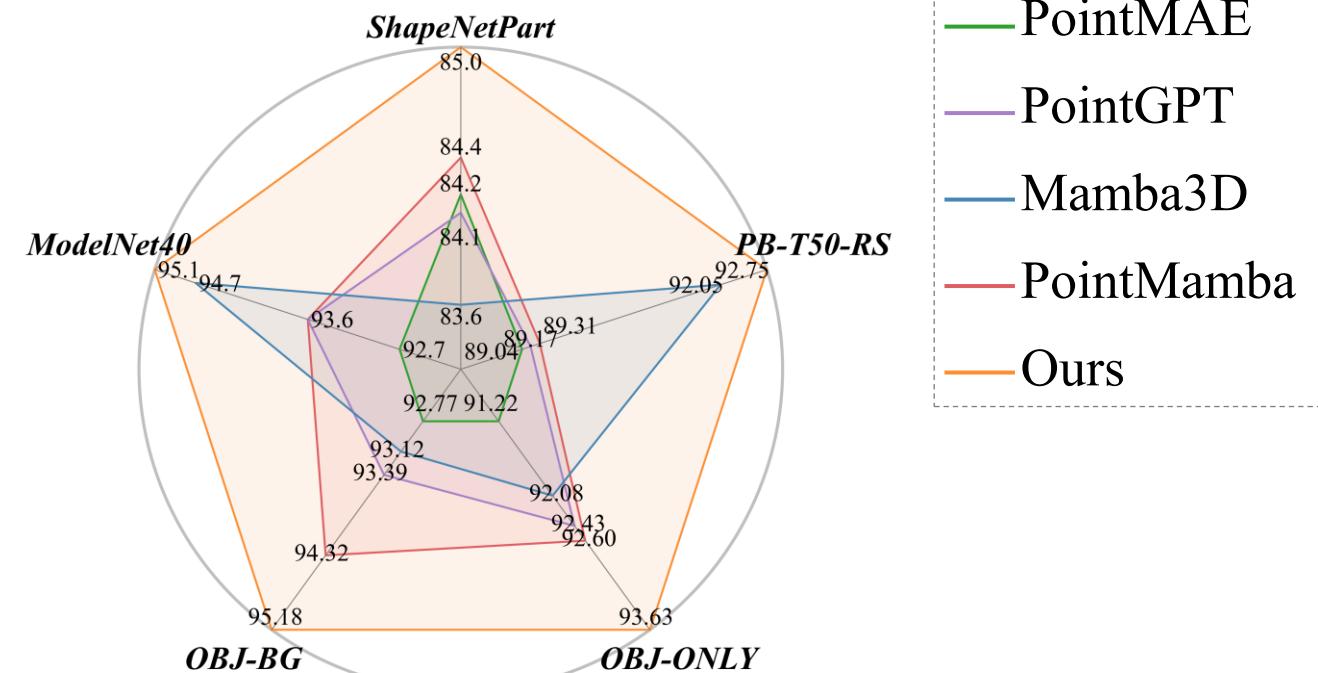
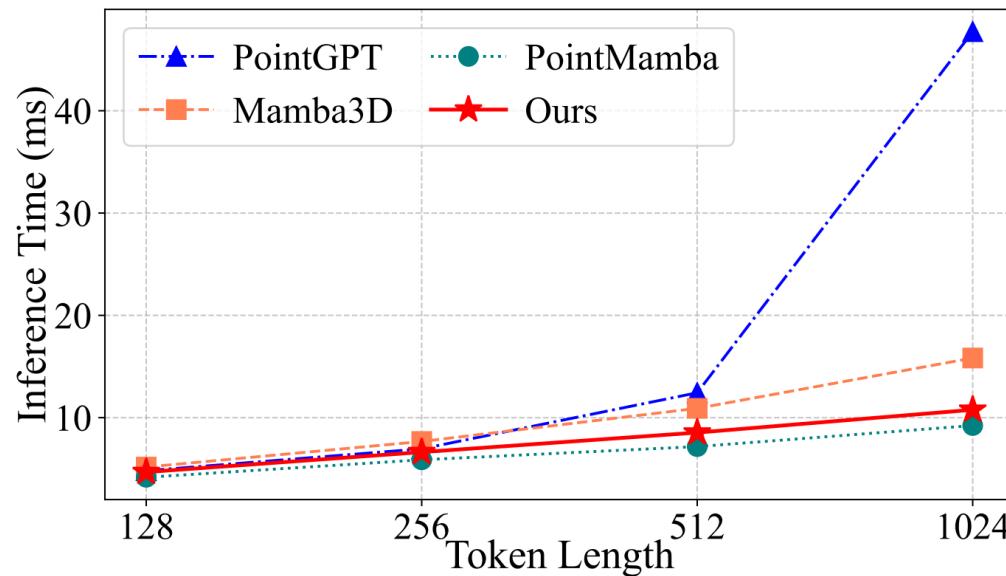
分割任务

Method	Architecture	mIoU _c	mIoU _i
MaskPoint [21]	Single-scale	84.6	86.0
PointBERT [38]	Single-scale	84.1	85.6
PointMAE [23]	Single-scale	84.2	86.1
PointM2AE [39]	Multi-scale	84.9	86.5
PointGPT-S [3]	Single-scale	84.1	86.2
PointMamba [20]	Single-scale	84.4	86.2
Mamba3D [15]	Single-scale	83.6	85.6
Ours	Single-scale	85.0	86.7

少样本分类任务


Method	5-way		10-way	
	10-shot	20-shot	10-shot	20-shot
PointBERT [38]	94.6±3.6	93.9±3.1	86.4±5.4	91.3±4.6
MaskPoint [21]	95.0±3.7	97.2±1.7	91.4±4.0	92.7±5.1
PointMAE [23]	96.3±2.5	97.8±1.8	92.6±4.1	93.4±3.5
PointM2AE [39]	96.8±1.8	98.3±1.4	92.3±4.5	95.0±3.0
PointGPT-S [3]	96.8±2.0	98.6±1.1	92.6±4.6	95.2±3.4
PointMamba [20]	96.9±2.0	99.0±1.1	93.0±4.4	95.6±3.2
Mamba3D [15]	96.4±2.2	98.2±1.2	92.4±4.1	95.2±2.9
Ours	97.5±2.3	99.1±1.4	93.5±3.7	96.1±3.5

(A) Classification on ScanObjectNN and ModelNet40 Datasets



Method	Backbone	Param. (M)	FLOPs (G)	ScanObjectNN			MODELNET40	
				OBJ-BG	OBJ-ONLY	PB-T50-RS	w/o Voting	w/ Voting
<i>Supervised learning only</i>								
PointNet [25]	-	3.5	0.5	73.3	79.2	68.0	89.2	-
PointNet++ [26]	-	1.5	1.7	82.3	84.3	77.9	90.7	-
PointCNN [18]	-	0.6	-	86.1	85.5	78.5	92.2	-
DGCNN [31]	-	1.8	2.4	82.8	86.2	78.1	92.9	-
PRANet [8]	-	2.3	-	-	-	81.0	93.7	-
PointNeXt [28]	-	1.4	3.6	-	-	87.7	94.0	-
PointMLP [22]	-	12.6	31.4	-	-	85.4	94.5	-
DeLA [2]	-	5.3	1.5	-	-	88.6	94.0	-
PCM [42]	-	34.2	45.0	-	-	88.1	93.4	-
<i>Pre-training using single-modal information</i>								
PointBERT [38]	Transformer	22.1	4.8	87.43	88.12	83.07	92.7	93.2
MaskPoint [21]	Transformer	22.1	4.8	89.30	88.10	84.30	-	93.8
PointM2AE [39]	Transformer	12.7	7.9	91.22	88.81	86.43	92.9	93.4
PointMAE [†] [23]	Transformer	22.1	4.8	92.77	91.22	89.04	92.7	93.8
PointGPT-S [†] [3]	Transformer	29.2	5.7	93.39	92.43	89.17	93.3	94.0
PointMamba [†] [20]	Mamba	12.3	3.1	94.32	92.60	89.31	93.6	94.1
Mamba3D [†] [15]	Mamba	16.9	3.9	93.12	92.08	92.05	94.7	95.1
Ours[†]	Structural SSM	15.8	4.0	95.18	93.63	92.75	95.1	95.4
<i>Pre-training using cross-modal information</i>								
ACT [†] [7]	Transformer	22.1	4.8	93.29	91.91	88.21	93.7	94.0
Joint-MAE [14]	Transformer	22.1	-	90.94	88.86	86.07	-	94.0
I2P-MAE [†] [41]	Transformer	15.3	-	94.15	91.57	90.11	93.7	94.1
ReCon [†] [27]	Transformer	43.6	5.3	95.18	93.29	90.63	94.5	94.7

(B) Segmentation on ShapeNetPart Dataset

Method	Architecture	$mIoU_c$	$mIoU_i$
<i>Supervised learning only</i>			
PointNet [25]	Single-scale	80.4	83.7
PointNet++ [26]	Multi-scale	81.9	85.1
APES [32]	Multi-scale	83.7	85.8
DeLA [2]	Multi-scale	85.8	87.0
PCM [42]	Multi-scale	85.3	87.0
<i>Pre-training using single-modal information</i>			
MaskPoint [21]	Single-scale	84.6	86.0
PointBERT [38]	Single-scale	84.1	85.6
PointMAE [23]	Single-scale	84.2	86.1
PointM2AE [39]	Multi-scale	84.9	86.5
PointGPT-S [3]	Single-scale	84.1	86.2
PointMamba [20]	Single-scale	84.4	86.2
Mamba3D [15]	Single-scale	83.6	85.6
Ours	Single-scale	85.0	86.7

(C) Linear Complexity of Our StruMamba3D

