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Motivation StruMamba3D

<+ Mamba-based paradigm significantly reduces computational cost
compared to the Transformer-based paradigm. This results in better

scalability and efficiency for large-scale data processing.
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Motivation StruMamba3D

<+ Mamba-based methods face challenges, such as serialized points
destroying the adjacency of 3D points, and its pre-trained selection

mechanism struggles to retain long-sequence memory.
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Motivation StruMamba3D

<» Our StruMamba3D paradigm uses the structural SSM to maintain the
spatial dependencies among points and the sequence length-adaptive

strategy to retain long-sequence memory.
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StruMamba3D

< Hidden states are assigned real spatial positions, and their update is
conditioned on parameters generated from spatial relationships, enabling
preservation of spatial structures and effective feature modeling.
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Method StruMamba3D

< Our method incorporates a dynamic state update strategy and a spatial
state consistency loss, which strengthen the model long-sequence
memory capability and improve its robustness to variable input lengths.

4 P F/ ™\
e Pf 8 :Dl - —— e
Discrete SSM: 5, ~ gl N O . A%
L L 3 ’%ﬁw 'G Teacher ,D, § ~
— — ,35» -
o hy = A_ht_l + By, Yt = Cht’ FullPomts lC] §
A =exp(AA), B=(AA) (exp(AA) -D)AB, | 0 X LA N
. :: $o ¢ = D: ﬁ —§—>: : § GT »§
Adaptive State Update: o S O L ema | [2] 8 Q
Spatial States ©
A — T X Al
TSV A
1=
P
Visible Po%nts

-




StruMamba3D

Experiments

Spatial state modeling significantly enhances the representation of point
cloud structural features without requiring sequence serialization.
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Experiments

StruMamba3D

The sequence length adaptation strategy enhances the long-sequence
memory capability of the pretrained model in downstream tasks.

Structural SLAS Overall Accuracy mloU,
SSM Block ScanNN  MN40  SNPart
X X 87.23 91.86 81.56
v X 92.09 94.45 84.49
v v 92.75 95.06 84.96
Overall Accuracy
ASUM Lsse ScanNN MN40 SNPart
X X 92.09 94.45 84.49
v X 92.26 94.57 84.56
v A=1 92.47 94.94 84.81
v A=2 92.75 95.06 84.96
v A=5 92.57 94.89 84.77
X A=2 92.16 94.65 84.56
ScanObjectNN ModelNet40 ShapeNetPart
Method mOA mOA o,
w/o Pretraining 91.33 93.68 83.96
MPM Pretraining 92.09 94.45 84.49
Our Pretraining 92.75 95.06 84.96
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Experiments

StruMamba3D
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ScanObjectNN MODELNET40
Method Backbone  Param. (M) FLOPs (G) I 5prg OBJ—OIglLY PB-T50-RS | w/o Voting W/ Voting
Supervised learning only
PointNet [25] - 3.5 0.5 73.3 79.2 68.0 89.2 -
PointNet++ [26] - 1.5 1.7 82.3 84.3 77.9 90.7 -
PointCNN [18] - 0.6 - 86.1 85.5 78.5 92.2 -
DGCNN [31] - 1.8 24 82.8 86.2 78.1 929 -
PRANet [8] - 2.3 - - - 81.0 93.7 -
PointNeXt [28] - 1.4 3.6 - - 87.7 94.0 -
PointMLP [22] - 12.6 314 - - 85.4 94.5 -
DeL.A [2] - 5.3 1.5 - - 88.6 94.0 -
PCM [42] - 342 45.0 - - 88.1 93.4 -
Pre-training using single-modal information

PointBERT [38] Transformer 22.1 4.8 87.43 88.12 83.07 92.7 93.2

MaskPoint [21] Transformer 22.1 4.8 89.30 88.10 84.30 - 93.8

PointM2AE [39] Transformer 12.7 79 91.22 88.81 86.43 92.9 93.4

PointMAET [23] Transformer 22.1 4.8 92.77 91.22 89.04 92.7 93.8

PointGPT-ST [3] Transformer 29.2 5.7 93.39 92.43 89.17 93.3 94.0

PointMamba' [20] Mamba 12.3 3.1 94.32 92.60 89.31 93.6 94.1

3D [15] Mamba 16.9 3.9 93 12 92 .08 92 05 947 95.1

I Ours' Structural SSM 15.8 4.0 95.18 93.63 92.75 95.1 95.4

Pre-training using cross-modal information

ACTT [7] Transformer 22.1 4.8 93.29 91.91 88.21 93.7 94.0

Joint-MAE [14] Transformer 22.1 - 90.94 88.86 86.07 - 94.0

I2P-MAE' [41] Transformer 15.3 - 94.15 91.57 90.11 93.7 94.1

ReCon' [27] Transformer 43.6 5.3 95.18 93.29 90.63 94.5 94.7
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Method Architecture mloU. mloU; Method S5-way 10-way
MaskPoint [21] Single-scale 84.6 86.0 10-shot  20-shot | 10-shot  20-shot
PointBERT [38] Single-scale 84.1 85.6 PointBERT [38] | 94.6436 93.943.1 | 86.4+54 91.3+46
PointMAE [23] Single-scale 84.2 86.1 MaskPoint [21] 95.043.7 97.241.7 | 91.4+40 92.745.1
PointM2AE [39] Multi-scale 84.9 86.5 PointMAE [23] 96.3+25 97.8+18 | 92.6441 93.4+35
PointGPT-S [3] Single-scale 84.1 86.2 PointM2AE [39] | 96.8+1.8 98.34+14 | 92.34+45 95.0+3.0
PointMamba [20] Single-scale 84.4 86.2 PointGPT-S [3] 96.8+20 98.64+1.1 | 92.6+46 952434
Mamba3D [15 Single-scale 83.6 85.6 PointMamba [20] | 96.942.0 99.0+1.1 | 93.0+44 95.6+32
Ours Single-scale 85.0 86.7 amba3D [15] 964422 O824+10 1024441 0521020
IOurs 97.5+23 99.1+14 | 93.5+37 96.1:ﬁ:3.5|




StruMamba3D

Experiments

(A) Classification on ScanObjectNN and ModelNet40 Datasets

ScanObjectNN MODELNET40
Method Backbone  Param. (M) FLOPs (G) 5argm OBJ—OlglLY PB-T50-RS | w/o Voting w/ Voting
Supervised learning only
PointNet [25] - 3.5 0.5 73.3 79.2 68.0 89.2 -
PointNet++ [26] - 1.5 1.7 82.3 84.3 77.9 90.7 -
PointCNN [18] - 0.6 - 86.1 85.5 78.5 92.2 -
DGCNN [31] - 1.8 2.4 82.8 86.2 78.1 92.9 -
PRANet [8] - 2.3 - - - 81.0 93.7 -
PointNeXt [28] - 1.4 3.6 - - 87.7 94.0 -
PointMLP [22] - 12.6 314 - - 85.4 94.5 -
Del A [2] - 5.3 1.5 - - 88.6 94.0 -
PCM [42] - 34.2 45.0 - - 88.1 93.4 -
Pre-training using single-modal information
PointBERT [38] Transformer 22.1 4.8 87.43 88.12 83.07 92.7 93.2
MaskPoint [21] Transformer 22.1 4.8 89.30 88.10 84.30 - 93.8
PointM2AE [39] Transformer 12.7 79 91.22 88.81 86.43 929 93.4
PointMAET [23] Transformer 22.1 4.8 92.77 91.22 89.04 92.7 93.8
PointGPT-ST [3] Transformer 29.2 5.7 93.39 92.43 89.17 93.3 94.0
PointMamba' [20] Mamba 12.3 3.1 94.32 92.60 89.31 93.6 94.1
Mamba3D' [15] Mamba 169 3.9 9312 92,08 92.05 94.7 95.1
Ours' Structural SSM 15.8 4.0 95.18 93.63 92.75 95.1 95.4
Pre-training using cross-modal information

ACT' [7] Transformer 22.1 4.8 93.29 91.91 88.21 93.7 94.0
Joint-MAE [14] Transformer 22.1 - 90.94 88.86 86.07 - 94.0
[2P-MAE' [41] Transformer 15.3 - 94.15 91.57 90.11 93.7 94.1
ReCon' [27] Transformer 43.6 53 95.18 93.29 90.63 94.5 94.7




Experiments

StruMamba3D

(B) Segmentation on ShapeNetPart Dataset

Method Architecture mloU., mloU;
Supervised learning only
PointNet [25] Single-scale 80.4 83.7
PointNet++ [26] Multi-scale 81.9 85.1
APES [32] Multi-scale 83.7 85.8
DelLA [2] Multi-scale 85.8 87.0
PCM [42] Multi-scale 85.3 87.0
Pre-training using single-modal information
MaskPoint [21] Single-scale 84.6 86.0
PointBERT [38] Single-scale 84.1 85.6
PointMAE [23] Single-scale 84.2 86.1
PointM2AE [39] Multi-scale 84.9 86.5
PointGPT-S [3] Single-scale 84.1 86.2
PointMamba [20] Single-scale 84.4 86.2
Mamba3D [15] Single-scale 83.6 85.6
Ours Single-scale 85.0 86.7
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StruMamba3D

Experiments

(C) Linear Complexity of Our StruMamba3D

Inference Time (ms)
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