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Dataset Condensation: Concept and Limitations

• Dataset condensation compresses large-scale datasets into a compact synthetic 
set that preserves essential learning signals.

• However, existing methods 
fail under noisy labels, 
producing distorted and 
unreliable synthetic data.

• For example, under a 40% 
asymmetric noise 
environment, the ship class 
is distorted into a form with 
horse legs (image on the 
right).



Our Solution: Robust Dataset Condensation (RDC)

• We propose Robust Dataset Condensation (RDC), the first end-to-end framework 
resilient to noisy labels.

• RDC leverages supervised contrastive learning and Golden MixUp Contrast to 
generate clean, robust synthetic datasets.
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How RDC Works
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• A golden set of clean and relabeled samples is extracted from noisy data and 
combined with synthetic samples.

• Golden MixUp Contrast transfers reliable signals from the golden set, enhancing 
diversity and suppressing noise.



Performance under Noisy Labels

• RDC consistently outperforms existing methods across noise types and ratios.

• In CIFAR-10 with 40% asymmetric noise, RDC achieves 55.55%, far higher than 
the two-stage method (38.61%) and close to the clean upper bound (60.24%).

• The improvement generalizes to CIFAR-100 and Tiny-ImageNet, confirming RDC’s 
robustness and scalability.



Why It Works: Component Analysis

• Adding semi-supervised learning (DivideMix) and SupCon yields moderate gains, 
but limited under asymmetric noise.

• Simple augmentation (flip, crop) fails to resolve the diversity problem of synthetic 
sets.

• Golden MixUp Contrast (GMC) provides the largest boost, proving essential for 
robust and diverse condensation.



Seeing the Difference: Visualization of Condensed Datasets

• Baseline condensation (Acc-DD) suffers severe class interference, mixing 
features across categories.

• Two-stage cleaning reduces interference but still leaves residual contamination.

• RDC fully removes cross-class noise, yielding clean and accurate synthetic 
representations of horse and ship.



Key Takeaways

• RDC is the first dataset condensation method robust to noisy labels.

• Supervised contrastive learning separates classes, reducing cross-class 
interference.

• Golden MixUp Contrast transfers reliable signals from real data, enhancing 
diversity and stability.

• RDC shows strong robustness and generalizability across noise types, levels, and 
architectures.
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